Resource Summary Report

Generated by FDI Lab - SciCrunch.org on Apr 27, 2024

Phospho-Estrogen Receptor alpha (Ser118) (16J4) Mouse mAb

RRID:AB_331289 Type: Antibody

Proper Citation

(Cell Signaling Technology Cat# 2511, RRID:AB_331289)

Antibody Information

URL: http://antibodyregistry.org/AB_331289

Proper Citation: (Cell Signaling Technology Cat# 2511, RRID:AB_331289)

Target Antigen: Phospho-Estrogen Receptor alpha (Ser118) (16J4) Mouse mAb

Host Organism: mouse

Clonality: monoclonal

Comments: Applications: W, IHC-P. Consolidation on 10/2018: AB_10079292,

AB_10831843, AB_331289.

Antibody Name: Phospho-Estrogen Receptor alpha (Ser118) (16J4) Mouse mAb

Description: This monoclonal targets Phospho-Estrogen Receptor alpha (Ser118) (16J4)

Mouse mAb

Target Organism: human

Antibody ID: AB_331289

Vendor: Cell Signaling Technology

Catalog Number: 2511

Ratings and Alerts

No rating or validation information has been found for Phospho-Estrogen Receptor alpha (Ser118) (16J4) Mouse mAb.

No alerts have been found for Phospho-Estrogen Receptor alpha (Ser118) (16J4) Mouse mAb.

Data and Source Information

Source: Antibody Registry

Usage and Citation Metrics

We found 5 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Ng ASN, et al. (2022) AKTIP loss is enriched in ER?-positive breast cancer for tumorigenesis and confers endocrine resistance. Cell reports, 41(11), 111821.

Vydra N, et al. (2021) Heat shock factor 1 (HSF1) cooperates with estrogen receptor ? (ER?) in the regulation of estrogen action in breast cancer cells. eLife, 10.

He YH, et al. (2021) ER? determines the chemo-resistant function of mutant p53 involving the switch between lincRNA-p21 and DDB2 expressions. Molecular therapy. Nucleic acids, 25, 536.

Guan J, et al. (2019) Therapeutic Ligands Antagonize Estrogen Receptor Function by Impairing Its Mobility. Cell, 178(4), 949.

Hinohara K, et al. (2018) KDM5 Histone Demethylase Activity Links Cellular Transcriptomic Heterogeneity to Therapeutic Resistance. Cancer cell, 34(6), 939.