Resource Summary Report

Generated by FDI Lab - SciCrunch.org on Mar 31, 2025

Mouse Anti-BrdU Monoclonal Antibody, Unconjugated, Clone IIB5

RRID:AB_306886 Type: Antibody

Proper Citation

(Abcam Cat# ab8955, RRID:AB_306886)

Antibody Information

URL: http://antibodyregistry.org/AB_306886

Proper Citation: (Abcam Cat# ab8955, RRID:AB_306886)

Target Antigen: BrdU

Host Organism: mouse

Clonality: monoclonal

Comments: validation status unknown, seller recommendations provided in 2012: Flow Cytometry; Immunocytochemistry; Immunohistochemistry; Flow Cytometry, Immunohistochemistry-Fr, Immunohistochemistry-P

Antibody Name: Mouse Anti-BrdU Monoclonal Antibody, Unconjugated, Clone IIB5

Description: This monoclonal targets BrdU

Clone ID: Clone IIB5

Antibody ID: AB_306886

Vendor: Abcam

Catalog Number: ab8955

Record Creation Time: 20241016T222500+0000

Record Last Update: 20241016T225048+0000

Ratings and Alerts

No rating or validation information has been found for Mouse Anti-BrdU Monoclonal Antibody, Unconjugated, Clone IIB5.

No alerts have been found for Mouse Anti-BrdU Monoclonal Antibody, Unconjugated, Clone IIB5.

Data and Source Information

Source: Antibody Registry

Usage and Citation Metrics

We found 5 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Rozen-Gagnon K, et al. (2021) Argonaute-CLIP delineates versatile, functional RNAi networks in Aedes aegypti, a major vector of human viruses. Cell host & microbe, 29(5), 834.

Hale CR, et al. (2021) FMRP regulates mRNAs encoding distinct functions in the cell body and dendrites of CA1 pyramidal neurons. eLife, 10.

Viais R, et al. (2021) Augmin deficiency in neural stem cells causes p53-dependent apoptosis and aborts brain development. eLife, 10.

Sawicka K, et al. (2019) FMRP has a cell-type-specific role in CA1 pyramidal neurons to regulate autism-related transcripts and circadian memory. eLife, 8.

Andrews WD, et al. (2016) Altered proliferative ability of neuronal progenitors in PlexinA1 mutant mice. The Journal of comparative neurology, 524(3), 518.