Resource Summary Report

Generated by FDI Lab - SciCrunch.org on May 29, 2025

Mouse Anti-Myosin, Slow skeletal Monoclonal Antibody, Unconjugated, Clone NOQ7.5.4D

RRID:AB_297734 Type: Antibody

Proper Citation

(Abcam Cat# ab11083, RRID:AB_297734)

Antibody Information

URL: http://antibodyregistry.org/AB_297734

Proper Citation: (Abcam Cat# ab11083, RRID:AB_297734)

Target Antigen: Slow skeletal Myosin

Host Organism: mouse

Clonality: monoclonal

Comments: validation status unknown, seller recommendations provided in 2012: Electron Microscopy; ELISA; Immunohistochemistry; Radioimmunoassay; Western Blot; ELISA, EM, Immunocytochemistry/Immunofluorescence, Immunohistochemistry-P, Radioimmunoassay, Western Blot

Antibody Name: Mouse Anti-Myosin, Slow skeletal Monoclonal Antibody, Unconjugated, Clone NOQ7.5.4D

Description: This monoclonal targets Slow skeletal Myosin

Target Organism: chicken, feline, chickenavian, rat, hamster, porcine, canine, cow, goat, pig, mouse, rabbit, cat, bovine, human, dog, sheep

Clone ID: Clone NOQ7.5.4D

Antibody ID: AB_297734

Vendor: Abcam

Catalog Number: ab11083

Record Creation Time: 20241017T000114+0000

Record Last Update: 20241017T013452+0000

Ratings and Alerts

No rating or validation information has been found for Mouse Anti-Myosin, Slow skeletal Monoclonal Antibody, Unconjugated, Clone NOQ7.5.4D.

No alerts have been found for Mouse Anti-Myosin, Slow skeletal Monoclonal Antibody, Unconjugated, Clone NOQ7.5.4D.

Data and Source Information

Source: Antibody Registry

Usage and Citation Metrics

We found 8 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Li S, et al. (2024) Dietary protein restriction regulates skeletal muscle fiber metabolic characteristics associated with the FGF21-ERK1/2 pathway. iScience, 27(3), 109249.

Zhang K, et al. (2024) Glucose restriction enhances oxidative fiber formation: A multi-omic signal network involving AMPK and CaMK2. iScience, 27(1), 108590.

Zhao Y, et al. (2023) Adipocyte Rnf20 ablation increases the fast-twitch fibers of skeletal muscle via lysophosphatidylcholine 16:0. Cellular and molecular life sciences : CMLS, 80(9), 243.

Dörmann N, et al. (2023) Metabolic remodeling in cardiac hypertrophy and heart failure with reduced ejection fraction occurs independent of transcription factor EB in mice. Frontiers in cardiovascular medicine, 10, 1323760.

Stremming J, et al. (2022) Lower citrate synthase activity, mitochondrial complex expression, and fewer oxidative myofibers characterize skeletal muscle from growth-restricted fetal sheep. American journal of physiology. Regulatory, integrative and comparative physiology, 322(3), R228.

Schrötter S, et al. (2022) The non-essential TSC complex component TBC1D7 restricts

tissue mTORC1 signaling and brain and neuron growth. Cell reports, 39(7), 110824.

Ebbinghaus M, et al. (2020) Gain-of-function mutation in SCN11A causes itch and affects neurogenic inflammation and muscle function in Scn11a+/L799P mice. PloS one, 15(8), e0237101.

Seldin MM, et al. (2018) A Strategy for Discovery of Endocrine Interactions with Application to Whole-Body Metabolism. Cell metabolism, 27(5), 1138.