Resource Summary Report

Generated by FDI Lab - SciCrunch.org on May 2, 2025

Alexa Fluor® 488 labeled goat anti-mouse IgG

RRID:AB_2904018 Type: Antibody

Proper Citation

(ServiceBio Cat# GB25301, RRID:AB_2904018)

Antibody Information

URL: http://antibodyregistry.org/AB_2904018

Proper Citation: (ServiceBio Cat# GB25301, RRID:AB_2904018)

Target Antigen: IgG

Host Organism: goat

Clonality: polyclonal secondary

Comments: Applications: IF

Antibody Name: Alexa Fluor® 488 labeled goat anti-mouse IgG

Description: This polyclonal secondary targets IgG

Target Organism: mouse

Antibody ID: AB_2904018

Vendor: ServiceBio

Catalog Number: GB25301

Record Creation Time: 20231110T031514+0000

Record Last Update: 20240725T041730+0000

Ratings and Alerts

No rating or validation information has been found for Alexa Fluor® 488 labeled goat antimouse IgG.

No alerts have been found for Alexa Fluor® 488 labeled goat anti-mouse IgG.

Data and Source Information

Source: Antibody Registry

Usage and Citation Metrics

We found 7 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Luo W, et al. (2025) Perfluoropentane-based oxygen-loaded nanodroplets reduce microglial activation through metabolic reprogramming. Neural regeneration research, 20(4), 1178.

Liu J, et al. (2024) Dual-targeting AAV9P1-mediated neuronal reprogramming in a mouse model of traumatic brain injury. Neural regeneration research, 19(3), 629.

Zhou B, et al. (2024) Identification of signaling pathways that specify a subset of migrating enteric neural crest cells at the wavefront in mouse embryos. Developmental cell, 59(13), 1689.

Gao T, et al. (2024) Sonogenetics-controlled synthetic designer cells for cancer therapy in tumor mouse models. Cell reports. Medicine, 5(5), 101513.

Guo Y, et al. (2023) Ventrolateral periaqueductal gray GABAergic neurons promote arousal of sevoflurane anesthesia through cortico-midbrain circuit. iScience, 26(9), 107486.

Yu Z, et al. (2023) The ferroptosis activity is associated with neurological recovery following chronic compressive spinal cord injury. Neural regeneration research, 18(11), 2482.

Chen YX, et al. (2022) Sodium selenite promotes neurological function recovery after spinal cord injury by inhibiting ferroptosis. Neural regeneration research, 17(12), 2702.