Resource Summary Report

Generated by FDI Lab - SciCrunch.org on Apr 14, 2025

Ms I-A I-E BV480 M5/114.15.2

RRID:AB_2869739 Type: Antibody

Proper Citation

(BD Biosciences Cat# 566086, RRID:AB_2869739)

Antibody Information

URL: http://antibodyregistry.org/AB_2869739

Proper Citation: (BD Biosciences Cat# 566086, RRID:AB_2869739)

Target Antigen: I-A/I-E

Host Organism: rat

Clonality: monoclonal

Comments: Applications: Flow cytometry

Antibody Name: Ms I-A I-E BV480 M5/114.15.2

Description: This monoclonal targets I-A/I-E

Target Organism: mouse

Clone ID: M5/114.15.2 (aka M5/114)

Antibody ID: AB_2869739

Vendor: BD Biosciences

Catalog Number: 566086

Alternative Catalog Numbers: 566088

Record Creation Time: 20231110T031930+0000

Record Last Update: 20240725T053841+0000

Ratings and Alerts

No rating or validation information has been found for Ms I-A I-E BV480 M5/114.15.2.

No alerts have been found for Ms I-A I-E BV480 M5/114.15.2.

Data and Source Information

Source: Antibody Registry

Usage and Citation Metrics

We found 6 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Zohaib Ali M, et al. (2024) A modified BPaL regimen for tuberculosis treatment replaces linezolid with inhaled spectinamides. eLife, 13.

Deng Q, et al. (2024) SMARCA4 is a haploinsufficient B cell lymphoma tumor suppressor that fine-tunes centrocyte cell fate decisions. Cancer cell.

Linde IL, et al. (2023) Neutrophil-activating therapy for the treatment of cancer. Cancer cell, 41(2), 356.

Dutt TS, et al. (2022) Mucosal exposure to non-tuberculous mycobacteria elicits B cell-mediated immunity against pulmonary tuberculosis. Cell reports, 41(11), 111783.

Dikiy S, et al. (2021) A distal Foxp3 enhancer enables interleukin-2 dependent thymic Treg cell lineage commitment for robust immune tolerance. Immunity, 54(5), 931.

Lam KC, et al. (2021) Microbiota triggers STING-type I IFN-dependent monocyte reprogramming of the tumor microenvironment. Cell, 184(21), 5338.