Resource Summary Report

Generated by FDI Lab - SciCrunch.org on May 22, 2025

Purified Mouse IgG2a, ? Isotype Ctrl

RRID:AB_2800437 Type: Antibody

Proper Citation

(BioLegend Cat# 401502, RRID:AB_2800437)

Antibody Information

URL: http://antibodyregistry.org/AB_2800437

Proper Citation: (BioLegend Cat# 401502, RRID:AB_2800437)

Host Organism: mouse

Clonality: monoclonal

Comments: Applications: FC, ICFC, WB, IP, ICC, IHC, FA, ChIP

Antibody Name: Purified Mouse IgG2a, ? Isotype Ctrl

Description: This monoclonal targets

Clone ID: clone MG2a-53

Antibody ID: AB_2800437

Vendor: BioLegend

Catalog Number: 401502

Alternative Catalog Numbers: 401501

Record Creation Time: 20241017T001852+0000

Record Last Update: 20241017T020019+0000

Ratings and Alerts

No rating or validation information has been found for Purified Mouse IgG2a, ? Isotype Ctrl.

Warning: Discontinued at BioLegend

Applications: FC, ICFC, WB, IP, ICC, IHC, FA, ChIP

Data and Source Information

Source: Antibody Registry

Usage and Citation Metrics

We found 5 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Albanese M, et al. (2024) Receptor transfer between immune cells by autoantibody-enhanced, CD32-driven trogocytosis is hijacked by HIV-1 to infect resting CD4 T cells. Cell reports. Medicine, 5(4), 101483.

Narayan S, et al. (2022) Sensitization of FOLFOX-resistant colorectal cancer cells via the modulation of a novel pathway involving protein phosphatase 2A. iScience, 25(7), 104518.

Nishinaka T, et al. (2022) Glycolaldehyde-derived advanced glycation end products suppress STING/TBK1/IRF3 signaling via CD36. Life sciences, 310, 121116.

Yamazaki Y, et al. (2021) Involvement of multiple scavenger receptors in advanced glycation end product-induced vessel tube formation in endothelial cells. Experimental cell research, 408(1), 112857.

Wang J, et al. (2020) HLA-DR15 Molecules Jointly Shape an Autoreactive T Cell Repertoire in Multiple Sclerosis. Cell, 183(5), 1264.