Resource Summary Report

Generated by FDI Lab - SciCrunch.org on May 19, 2025

RIP3 (E1Z1D) Rabbit Antibody

RRID:AB_2687467 Type: Antibody

Proper Citation

(Cell Signaling Technology Cat# 13526, RRID:AB_2687467)

Antibody Information

URL: http://antibodyregistry.org/AB_2687467

Proper Citation: (Cell Signaling Technology Cat# 13526, RRID:AB_2687467)

Target Antigen: RIP3 (E1Z1D)

Host Organism: rabbit

Clonality: monoclonal

Comments: Applications: W, IP

Antibody Name: RIP3 (E1Z1D) Rabbit Antibody

Description: This monoclonal targets RIP3 (E1Z1D)

Target Organism: human

Antibody ID: AB_2687467

Vendor: Cell Signaling Technology

Catalog Number: 13526

Record Creation Time: 20231110T034042+0000

Record Last Update: 20240725T014514+0000

Ratings and Alerts

No rating or validation information has been found for RIP3 (E1Z1D) Rabbit Antibody.

No alerts have been found for RIP3 (E1Z1D) Rabbit Antibody.

Data and Source Information

Source: Antibody Registry

Usage and Citation Metrics

We found 7 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Chiou S, et al. (2024) An immunohistochemical atlas of necroptotic pathway expression. EMBO molecular medicine, 16(7), 1717.

Mannion J, et al. (2024) A RIPK1-specific PROTAC degrader achieves potent antitumor activity by enhancing immunogenic cell death. Immunity, 57(7), 1514.

André-Grégoire G, et al. (2022) Inhibition of the pseudokinase MLKL alters extracellular vesicle release and reduces tumor growth in glioblastoma. iScience, 25(10), 105118.

Chen IT, et al. (2021) Promyelocytic leukemia protein targets MK2 to promote cytotoxicity. EMBO reports, 22(12), e52254.

Tan Y, et al. (2021) Somatic Epigenetic Silencing of RIPK3 Inactivates Necroptosis and Contributes to Chemoresistance in Malignant Mesothelioma. Clinical cancer research: an official journal of the American Association for Cancer Research, 27(4), 1200.

Li J, et al. (2020) Necroptosis in head and neck squamous cell carcinoma: characterization of clinicopathological relevance and in vitro cell model. Cell death & disease, 11(5), 391.

Yoon S, et al. (2017) MLKL, the Protein that Mediates Necroptosis, Also Regulates Endosomal Trafficking and Extracellular Vesicle Generation. Immunity, 47(1), 51.