Resource Summary Report

Generated by FDI Lab - SciCrunch.org on Apr 6, 2025

Anti-GFAP polyclonal antibody

RRID:AB_2683015 Type: Antibody

Proper Citation

(Atlas Antibodies Cat# HPA056030, RRID:AB_2683015)

Antibody Information

URL: http://antibodyregistry.org/AB_2683015

Proper Citation: (Atlas Antibodies Cat# HPA056030, RRID:AB_2683015)

Target Antigen: GFAP

Host Organism: rabbit

Clonality: polyclonal

Comments: Originating manufacturer of this product. Applications: ICC-IF, IHC, WB. Orthogonal validation of protein expression using IHC by comparison to RNA-seq data of corresponding target in high and low expression tissues. Immunogen: Recombinant Protein Epitope Signature Tag (PrEST).

Antibody Name: Anti-GFAP polyclonal antibody

Description: This polyclonal targets GFAP

Target Organism: mouse, human

Antibody ID: AB_2683015

Vendor: Atlas Antibodies

Catalog Number: HPA056030

Record Creation Time: 20231110T034114+0000

Record Last Update: 20240725T043947+0000

Ratings and Alerts

 Antibody validation available from The Human Protein Atlas - Human Protein Atlas https://www.proteinatlas.org/search/HPA056030

No alerts have been found for Anti-GFAP polyclonal antibody.

Data and Source Information

Source: Antibody Registry

Usage and Citation Metrics

We found 6 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Tulva K, et al. (2024) Early trigeminal and sensory impairment and lysosomal dysfunction in accurate models of Wolfram syndrome. Experimental neurology, 385, 115099.

Faisal M, et al. (2024) No Evidence of Sensory Neuropathy in a Traditional Mouse Model of Idiopathic Parkinson's Disease. Cells, 13(10).

Lazzarini G, et al. (2024) Glial cells are affected more than interneurons by the loss of Engrailed 2 gene in the mouse cerebellum. Journal of anatomy, 244(4), 667.

Takahashi TM, et al. (2022) Optogenetic induction of hibernation-like state with modified human Opsin4 in mice. Cell reports methods, 2(11), 100336.

Seguella L, et al. (2021) High-fat diet impairs duodenal barrier function and elicits gliadependent changes along the gut-brain axis that are required for anxiogenic and depressive-like behaviors. Journal of neuroinflammation, 18(1), 115.

Anstötz M, et al. (2020) A Toolbox of Criteria for Distinguishing Cajal-Retzius Cells from Other Neuronal Types in the Postnatal Mouse Hippocampus. eNeuro, 7(1).