Resource Summary Report

Generated by FDI Lab - SciCrunch.org on Apr 9, 2025

GFP (green fluorescent protein) antibody

RRID:AB_2571574 Type: Antibody

Proper Citation

(Frontier Institute Cat# GFP-Go-Af1480, RRID:AB_2571574)

Antibody Information

URL: http://antibodyregistry.org/AB_2571574

Proper Citation: (Frontier Institute Cat# GFP-Go-Af1480, RRID:AB_2571574)

Target Antigen: green fluorescent protein (YP_002302326)

Host Organism: goat

Clonality: polyclonal

Antibody Name: GFP (green fluorescent protein) antibody

Description: This polyclonal targets green fluorescent protein (YP_002302326)

Antibody ID: AB_2571574

Vendor: Frontier Institute

Catalog Number: GFP-Go-Af1480

Record Creation Time: 20231110T035125+0000

Record Last Update: 20240725T093247+0000

Ratings and Alerts

No rating or validation information has been found for GFP (green fluorescent protein) antibody.

No alerts have been found for GFP (green fluorescent protein) antibody.

Data and Source Information

Source: Antibody Registry

Usage and Citation Metrics

We found 16 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Murakami S, et al. (2024) Somatostatin affects GnRH neuronal development and migration and stimulates olfactory-related fiber fasciculation. Developmental neurobiology, 84(1), 3.

Yokoyama K, et al. (2024) Visualization of myelin-forming oligodendrocytes in the adult mouse brain. Journal of neurochemistry.

Nishina T, et al. (2023) Interleukin 11 confers resistance to dextran sulfate sodium-induced colitis in mice. iScience, 26(2), 105934.

Matsushita N, et al. (2023) Protocol for highly selective transgene expression through the flipexcision switch system by using a unilateral spacer sequence in rodents. STAR protocols, 4(4), 102667.

Matsushita N, et al. (2023) Highly selective transgene expression through the flip-excision switch system by using a unilateral spacer sequence. Cell reports methods, 3(2), 100393.

Ramos C, et al. (2022) Activation of Extrasynaptic Kainate Receptors Drives Hilar Mossy Cell Activity. The Journal of neuroscience : the official journal of the Society for Neuroscience, 42(14), 2872.

Murakami S, et al. (2022) Olfactory placode generates a diverse population of neurons expressing GnRH, somatostatin mRNA, neuropeptide Y, or calbindin in the chick forebrain. The Journal of comparative neurology, 530(17), 2977.

Ramos-Prats A, et al. (2022) VIP-expressing interneurons in the anterior insular cortex contribute to sensory processing to regulate adaptive behavior. Cell reports, 39(9), 110893.

Miyazaki T, et al. (2021) Compartmentalized Input-Output Organization of Lugaro Cells in the Cerebellar Cortex. Neuroscience, 462, 89.

Matsuoka T, et al. (2021) Kv11 (ether-à-go-go-related gene) voltage-dependent K+ channels promote resonance and oscillation of subthreshold membrane potentials. The Journal of physiology, 599(2), 547.

Miyazaki T, et al. (2021) Excitatory and inhibitory receptors utilize distinct post- and transsynaptic mechanisms in vivo. eLife, 10.

Fukabori R, et al. (2020) Enhanced Retrieval of Taste Associative Memory by Chemogenetic

Activation of Locus Coeruleus Norepinephrine Neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience, 40(43), 8367.

Wang HL, et al. (2019) Dorsal Raphe Dual Serotonin-Glutamate Neurons Drive Reward by Establishing Excitatory Synapses on VTA Mesoaccumbens Dopamine Neurons. Cell reports, 26(5), 1128.

Nonomura S, et al. (2018) Monitoring and Updating of Action Selection for Goal-Directed Behavior through the Striatal Direct and Indirect Pathways. Neuron, 99(6), 1302.

González-Fernández E, et al. (2018) PTEN negatively regulates the cell lineage progression from NG2+ glial progenitor to oligodendrocyte via mTOR-independent signaling. eLife, 7.

De Biase LM, et al. (2017) Local Cues Establish and Maintain Region-Specific Phenotypes of Basal Ganglia Microglia. Neuron, 95(2), 341.