Resource Summary Report

Generated by FDI Lab - SciCrunch.org on May 3, 2025

Fluorescein (FITC)-AffiniPure Donkey Anti-Sheep IgG (H+L) (min X Ck,GP,Sy Hms,Hrs,Hu,Ms,Rb,Rat Sr Prot)

RRID:AB_2340719 Type: Antibody

Proper Citation

(Jackson ImmunoResearch Labs Cat# 713-095-147, RRID:AB 2340719)

Antibody Information

URL: http://antibodyregistry.org/AB_2340719

Proper Citation: (Jackson ImmunoResearch Labs Cat# 713-095-147, RRID:AB_2340719)

Target Antigen: Sheep IgG (H+L)

Clonality: unknown

Comments: Originating manufacturer of this product

Antibody Name: Fluorescein (FITC)-AffiniPure Donkey Anti-Sheep IgG (H+L) (min X

Ck,GP,Sy Hms,Hrs,Hu,Ms,Rb,Rat Sr Prot)

Description: This unknown targets Sheep IgG (H+L)

Antibody ID: AB 2340719

Vendor: Jackson ImmunoResearch Labs

Catalog Number: 713-095-147

Record Creation Time: 20231110T041907+0000

Record Last Update: 20241115T103720+0000

Ratings and Alerts

No rating or validation information has been found for Fluorescein (FITC)-AffiniPure Donkey

Anti-Sheep IgG (H+L) (min X Ck,GP,Sy Hms,Hrs,Hu,Ms,Rb,Rat Sr Prot).

No alerts have been found for Fluorescein (FITC)-AffiniPure Donkey Anti-Sheep IgG (H+L) (min X Ck,GP,Sy Hms,Hrs,Hu,Ms,Rb,Rat Sr Prot).

Data and Source Information

Source: Antibody Registry

Usage and Citation Metrics

We found 4 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Feng J, et al. (2022) Modification of Neurogenic Colonic Motor Behaviours by Chemogenetic Ablation of Calretinin Neurons. Frontiers in cellular neuroscience, 16, 799717.

Haas AJ, et al. (2020) Interplay between Extracellular Matrix Stiffness and JAM-A Regulates Mechanical Load on ZO-1 and Tight Junction Assembly. Cell reports, 32(3), 107924.

Marin E, et al. (2019) Human Tolerogenic Dendritic Cells Regulate Immune Responses through Lactate Synthesis. Cell metabolism, 30(6), 1075.

Zhao WJ, et al. (2015) Catecholamine inputs to expiratory laryngeal motoneurons in rats. The Journal of comparative neurology, 523(3), 381.