Resource Summary Report

Generated by FDI Lab - SciCrunch.org on May 19, 2025

Kv2.2 potassium channel

RRID:AB_2315869 Type: Antibody

Proper Citation

(Antibodies Incorporated Cat# 73-369, RRID:AB_2315869)

Antibody Information

URL: http://antibodyregistry.org/AB_2315869

Proper Citation: (Antibodies Incorporated Cat# 73-369, RRID:AB_2315869)

Target Antigen: Kv2.2 potassium channel

Host Organism: mouse

Clonality: monoclonal

Comments: Applications: IB, ICC, IHC

Validation status: IF or IB (Pass), IB in brain (Pass), IHC in brain (Pass), KO (Pass)

This clone is associated with these products: purified (Antibodies Incorporated, Cat# 75-369,

RRID:AB_2315870), supernatant (Antibodies Incorporated, Cat# 73-369,

RRID: AB 2315869), hybridoma (UC Davis/NIH NeuroMab Facility, Cat# N372B/1,

RRID:AB_2877423)

Antibody Name: Kv2.2 potassium channel

Description: This monoclonal targets Kv2.2 potassium channel

Clone ID: N372B/1

Antibody ID: AB_2315869

Vendor: Antibodies Incorporated

Catalog Number: 73-369

Record Creation Time: 20231110T042036+0000

Record Last Update: 20241115T035244+0000

Ratings and Alerts

No rating or validation information has been found for Kv2.2 potassium channel.

No alerts have been found for Kv2.2 potassium channel.

Data and Source Information

Source: Antibody Registry

Usage and Citation Metrics

We found 3 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Gayet-Primo J, et al. (2018) Heteromeric KV2/KV8.2 Channels Mediate Delayed Rectifier Potassium Currents in Primate Photoreceptors. The Journal of neuroscience: the official journal of the Society for Neuroscience, 38(14), 3414.

Bishop HI, et al. (2018) Kv2 Ion Channels Determine the Expression and Localization of the Associated AMIGO-1 Cell Adhesion Molecule in Adult Brain Neurons. Frontiers in molecular neuroscience, 11, 1.

Fletcher EV, et al. (2017) Reduced sensory synaptic excitation impairs motor neuron function via Kv2.1 in spinal muscular atrophy. Nature neuroscience, 20(7), 905.