Resource Summary Report

Generated by FDI Lab - SciCrunch.org on Apr 18, 2025

Anti-TRPM5 Antibody

RRID:AB_2040252 Type: Antibody

Proper Citation

(Alomone Labs Cat# ACC-045, RRID:AB_2040252)

Antibody Information

URL: http://antibodyregistry.org/AB_2040252

Proper Citation: (Alomone Labs Cat# ACC-045, RRID:AB_2040252)

Target Antigen: TRPM5 Channel

Host Organism: rabbit

Clonality: unknown

Comments: Useful for Western Blot, Immunohistochemistry

Antibody Name: Anti-TRPM5 Antibody

Description: This unknown targets TRPM5 Channel

Target Organism: rat, mouse, human

Antibody ID: AB_2040252

Vendor: Alomone Labs

Catalog Number: ACC-045

Record Creation Time: 20241016T230458+0000

Record Last Update: 20241016T235938+0000

Ratings and Alerts

No rating or validation information has been found for Anti-TRPM5 Antibody.

No alerts have been found for Anti-TRPM5 Antibody.

Data and Source Information

Source: Antibody Registry

Usage and Citation Metrics

We found 4 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Richter P, et al. (2024) Sodium-Permeable Ion Channels TRPM4 and TRPM5 are Functional in Human Gastric Parietal Cells in Culture and Modulate the Cellular Response to Bitter-Tasting Food Constituents. Journal of agricultural and food chemistry, 72(9), 4906.

Ohmoto M, et al. (2023) A Transcription Factor Etv1/Er81 Is Involved in the Differentiation of Sweet, Umami, and Sodium Taste Cells. eNeuro, 10(4).

Nomura K, et al. (2020) All-Electrical Ca2+-Independent Signal Transduction Mediates Attractive Sodium Taste in Taste Buds. Neuron, 106(5), 816.

Lin B, et al. (2017) Injury Induces Endogenous Reprogramming and Dedifferentiation of Neuronal Progenitors to Multipotency. Cell stem cell, 21(6), 761.