Resource Summary Report

Generated by FDI Lab - SciCrunch.org on Apr 20, 2025

Anti-TRPC1 Antibody

RRID:AB_2040234 Type: Antibody

Proper Citation

(Alomone Labs Cat# ACC-010, RRID:AB_2040234)

Antibody Information

URL: http://antibodyregistry.org/AB_2040234

Proper Citation: (Alomone Labs Cat# ACC-010, RRID:AB_2040234)

Target Antigen: TRPC1 Channel

Host Organism: rabbit

Clonality: unknown

Comments: Useful for Western Blot, Immunohistochemistry, Immunoprecipitation, Imunocytochemistry, Indirect flow cytometry

Antibody Name: Anti-TRPC1 Antibody

Description: This unknown targets TRPC1 Channel

Target Organism: rat, mouse, human

Defining Citation: PMID:18925632

Antibody ID: AB_2040234

Vendor: Alomone Labs

Catalog Number: ACC-010

Record Creation Time: 20231110T050916+0000

Record Last Update: 20241115T111826+0000

Ratings and Alerts

No rating or validation information has been found for Anti-TRPC1 Antibody.

No alerts have been found for Anti-TRPC1 Antibody.

Data and Source Information

Source: Antibody Registry

Usage and Citation Metrics

We found 5 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Carver CM, et al. (2021) Blockade of TRPC Channels Limits Cholinergic-Driven Hyperexcitability and Seizure Susceptibility After Traumatic Brain Injury. Frontiers in neuroscience, 15, 681144.

Nascimento Da Conceicao V, et al. (2021) Resolving macrophage polarization through distinct Ca2+ entry channel that maintains intracellular signaling and mitochondrial bioenergetics. iScience, 24(11), 103339.

Perissinotti PP, et al. (2021) TRPC1/5-Ca V 3 Complex Mediates Leptin-Induced Excitability in Hypothalamic Neurons. Frontiers in neuroscience, 15, 679078.

Huang CY, et al. (2012) Coexpression of high-voltage-activated ion channels Kv3.4 and Cav1.2 in pioneer axons during pathfinding in the developing rat forebrain. The Journal of comparative neurology, 520(16), 3650.

Liu S, et al. (2008) Differential expression of canonical (classical) transient receptor potential channels in guinea pig enteric nervous system. The Journal of comparative neurology, 511(6), 847.