Resource Summary Report

Generated by FDI Lab - SciCrunch.org on May 5, 2025

Pyruvate Dehydrogenase E1 alpha antibody

RRID:AB_1951155 Type: Antibody

Proper Citation

(GeneTex Cat# GTX104015, RRID:AB_1951155)

Antibody Information

URL: http://antibodyregistry.org/AB_1951155

Proper Citation: (GeneTex Cat# GTX104015, RRID:AB_1951155)

Target Antigen: Pyruvate Dehydrogenase E1 alpha

Host Organism: rabbit

Clonality: polyclonal

Comments: Applications: WB, ICC/IF, IHC-P, IP

Antibody Name: Pyruvate Dehydrogenase E1 alpha antibody

Description: This polyclonal targets Pyruvate Dehydrogenase E1 alpha

Target Organism: rat, mouse, human

Antibody ID: AB_1951155

Vendor: GeneTex

Catalog Number: GTX104015

Record Creation Time: 20231110T051408+0000

Record Last Update: 20241115T074952+0000

Ratings and Alerts

No rating or validation information has been found for Pyruvate Dehydrogenase E1 alpha antibody.

No alerts have been found for Pyruvate Dehydrogenase E1 alpha antibody.

Data and Source Information

Source: Antibody Registry

Usage and Citation Metrics

We found 5 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Rosina M, et al. (2022) Ejection of damaged mitochondria and their removal by macrophages ensure efficient thermogenesis in brown adipose tissue. Cell metabolism, 34(4), 533.

Kirova DG, et al. (2022) A ROS-dependent mechanism promotes CDK2 phosphorylation to drive progression through S phase. Developmental cell, 57(14), 1712.

Valle ML, et al. (2022) Thiamine insufficiency induces Hypoxia Inducible Factor-1? as an upstream mediator for neurotoxicity and AD-like pathology. Molecular and cellular neurosciences, 123, 103785.

Jonus HC, et al. (2020) Thiamine mimetics sulbutiamine and benfotiamine as a nutraceutical approach to anticancer therapy. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 121, 109648.

Deng W, et al. (2014) Protein kinase B (PKB/AKT1) formed signaling complexes with mitochondrial proteins and prevented glycolytic energy dysfunction in cultured cardiomyocytes during ischemia-reperfusion injury. Endocrinology, 155(5), 1618.