Resource Summary Report

Generated by FDI Lab - SciCrunch.org on May 25, 2025

Mouse Anti-MyD88 Monoclonal Antibody, Unconjugated, Clone E-11

RRID:AB_1126429 Type: Antibody

Proper Citation

(Santa Cruz Biotechnology Cat# sc-74532, RRID:AB_1126429)

Antibody Information

URL: http://antibodyregistry.org/AB_1126429

Proper Citation: (Santa Cruz Biotechnology Cat# sc-74532, RRID:AB_1126429)

Target Antigen: MYD88

Host Organism: mouse

Clonality: monoclonal

Comments: validation status unknown check with seller; recommendations: ELISA;

Immunofluorescence; Immunoprecipitation; Western Blot; Western Blotting,

Immunoprecipitation, Immunofluorescence, ELISA

Antibody Name: Mouse Anti-MyD88 Monoclonal Antibody, Unconjugated, Clone E-11

Description: This monoclonal targets MYD88

Target Organism: rat, mouse, human

Clone ID: E-11

Antibody ID: AB_1126429

Vendor: Santa Cruz Biotechnology

Catalog Number: sc-74532

Record Creation Time: 20241017T003352+0000

Record Last Update: 20241017T022209+0000

Ratings and Alerts

No rating or validation information has been found for Mouse Anti-MyD88 Monoclonal Antibody, Unconjugated, Clone E-11.

No alerts have been found for Mouse Anti-MyD88 Monoclonal Antibody, Unconjugated, Clone E-11.

Data and Source Information

Source: Antibody Registry

Usage and Citation Metrics

We found 4 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Guo HZ, et al. (2024) A CD36-dependent non-canonical lipid metabolism program promotes immune escape and resistance to hypomethylating agent therapy in AML. Cell reports. Medicine, 5(6), 101592.

Lv B, et al. (2023) Chlorogenic acid reduces inflammation by inhibiting the elevated expression of KAT2A to ameliorate lipopolysaccharide-induced acute lung injury. British journal of pharmacology.

Oliva S, et al. (2023) Anti-TLR4 biological response to titanium nitride-coated dental implants: anti-inflammatory response and extracellular matrix synthesis. Frontiers in bioengineering and biotechnology, 11, 1266799.

Liu M, et al. (2020) Macrophage K63-Linked Ubiquitination of YAP Promotes Its Nuclear Localization and Exacerbates Atherosclerosis. Cell reports, 32(5), 107990.