Resource Summary Report

Generated by FDI Lab - SciCrunch.org on Apr 24, 2025

anti-trimethylHistone H3 (Lys4)

RRID:AB 11123891

Type: Antibody

Proper Citation

(MBL International Cat# MABI0304, RRID:AB_11123891)

Antibody Information

URL: http://antibodyregistry.org/AB_11123891

Proper Citation: (MBL International Cat# MABI0304, RRID:AB_11123891)

Target Antigen: anti-trimethylHistone H3 (Lys4)

Host Organism: mouse

Clonality: monoclonal

Comments: manufacturer recommendations: IgG1; IgG1 Immunoprecipitation;

Immunocytochemistry; Western Blot; ChIP; WB, IPP, ICC, ChIP

Antibody Name: anti-trimethylHistone H3 (Lys4)

Description: This monoclonal targets anti-trimethylHistone H3 (Lys4)

Target Organism: human

Antibody ID: AB_11123891

Vendor: MBL International

Catalog Number: MABI0304

Record Creation Time: 20231110T060844+0000

Record Last Update: 20241115T080842+0000

Ratings and Alerts

No rating or validation information has been found for anti-trimethylHistone H3 (Lys4).

No alerts have been found for anti-trimethylHistone H3 (Lys4).

Data and Source Information

Source: Antibody Registry

Usage and Citation Metrics

We found 8 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Kanki Y, et al. (2022) Bivalent-histone-marked immediate-early gene regulation is vital for VEGF-responsive angiogenesis. Cell reports, 38(6), 110332.

Yoshida K, et al. (2021) Intergenerational effect of short-term spaceflight in mice. iScience, 24(7), 102773.

Nagahama K, et al. (2020) Setd1a Insufficiency in Mice Attenuates Excitatory Synaptic Function and Recapitulates Schizophrenia-Related Behavioral Abnormalities. Cell reports, 32(11), 108126.

Yoshida K, et al. (2020) ATF7-Dependent Epigenetic Changes Are Required for the Intergenerational Effect of a Paternal Low-Protein Diet. Molecular cell, 78(3), 445.

Tsujimura T, et al. (2020) Controlling gene activation by enhancers through a drug-inducible topological insulator. eLife, 9.

Yamanaka S, et al. (2019) Broad Heterochromatic Domains Open in Gonocyte Development Prior to De Novo DNA Methylation. Developmental cell, 51(1), 21.

Matsuda T, et al. (2019) Pioneer Factor NeuroD1 Rearranges Transcriptional and Epigenetic Profiles to Execute Microglia-Neuron Conversion. Neuron, 101(3), 472.

Nojima T, et al. (2018) Deregulated Expression of Mammalian IncRNA through Loss of SPT6 Induces R-Loop Formation, Replication Stress, and Cellular Senescence. Molecular cell, 72(6), 970.