Resource Summary Report

Generated by FDI Lab - SciCrunch.org on May 27, 2025

AFP Monoclonal Antibody (P5B8)

RRID:AB 10987005

Type: Antibody

Proper Citation

(Thermo Fisher Scientific Cat# MA5-14666, RRID:AB_10987005)

Antibody Information

URL: http://antibodyregistry.org/AB_10987005

Proper Citation: (Thermo Fisher Scientific Cat# MA5-14666, RRID:AB_10987005)

Target Antigen: AFP

Host Organism: mouse

Clonality: monoclonal

Comments: Applications: WB (1:1,000), ICC/IF (5 µg/mL), RIA (Assay-dependent), ELISA

(Assay-dependent), IP (Assay-dependent)

Antibody Name: AFP Monoclonal Antibody (P5B8)

Description: This monoclonal targets AFP

Target Organism: human

Clone ID: Clone P5B8

Antibody ID: AB_10987005

Vendor: Thermo Fisher Scientific

Catalog Number: MA5-14666

Record Creation Time: 20231110T062550+0000

Record Last Update: 20241115T010418+0000

Ratings and Alerts

No rating or validation information has been found for AFP Monoclonal Antibody (P5B8).

No alerts have been found for AFP Monoclonal Antibody (P5B8).

Data and Source Information

Source: Antibody Registry

Usage and Citation Metrics

We found 14 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Kayser A, et al. (2024) Generation of a patient-specific hiPS cell line with heterozygous GNB2 mutation (UKMi003-A) causative for human sinus node dysfunction and a corresponding CRISPR/Cas9-corrected isogenic control (UKMi004-A). Stem cell research, 78, 103446.

Conteduca G, et al. (2024) Generation of IGGi003-A induced pluripotent stem cell line from a patient with Sotos Syndrome carrying c.1633delA NSD1 variant in exon 5. Stem cell research, 76, 103324.

Lei Q, et al. (2024) Establishing a human-induced pluripotent stem cell line (SMUSHi003-A) from a patient with Charcot-Marie-Tooth disease and focal segmental glomerulosclerosis. Stem cell research, 76, 103357.

Tang M, et al. (2024) Generation of a human induced pluripotent stem cell line (SMUSHi002-A) from an ALS patient carrying a heterozygous mutation c.1562G > A in the FUS gene. Stem cell research, 74, 103286.

Li X, et al. (2024) Establishing a human-induced pluripotent stem cell line SMUSHi005-A from a patient with hypophosphatemic vitamin D-resistant rickets carrying the PHEX c.1586-1586+1 delAG mutation. Stem cell research, 77, 103439.

Sagar R, et al. (2023) Generation and Characterization of a Human-Derived and Induced Pluripotent Stem Cell (iPSC) Line from an Alzheimer's Disease Patient with Neuropsychiatric Symptoms. Biomedicines, 11(12).

Li L, et al. (2023) Generation of a human iPSC line (CIBi013-A) from a patient with young-onset Parkinson's disease carrying a novel homozygous PARK7 (DJ-1) mutation. Stem cell research, 66, 102983.

Hu X, et al. (2022) Generation of a human induced pluripotent stem cell line FMUPDCi001-A from a patient with mental retardation, autosomal recessive 36 (MRT36) carrying the variants

c.219dupA and c.587C > T in ADAT3. Stem cell research, 61, 102777.

Shi Y, et al. (2022) Generation of a human iPSC line CIBi011-A from amniocytes of a healthy fetus. Stem cell research, 62, 102801.

Fu J, et al. (2022) Generation of a human iPSC line CIBi010-A with a reporter for ASGR1 using CRISPR/Cas9. Stem cell research, 62, 102800.

Ge W, et al. (2021) Generation of a human iPSC line CIBi009-A from a patient with familial hypercholesterolemia carrying variants of LDLR c.T1241G and APOB c.G1618T. Stem cell research, 53, 102347.

Yan R, et al. (2021) Generation of a human induced pluripotent stem cell line (SMUSHi001-A) from a patient with 46, XX male sex reversal syndrome carrying the SRY gene. Stem cell research, 54, 102397.

Wu S, et al. (2021) Generation of a human iPSC line QDMHi001-A from a patient with Marfan syndrome carrying a heterozygous c.6772 T > C variant in FBN1. Stem cell research, 54, 102390.

Yan R, et al. (2020) Generation of a human induced pluripotent stem cell line (SBWCHi001-A) from a patient with NEDSDV carrying a pathogenic mutation in CTNNB1 gene. Stem cell research, 49, 102091.