Resource Summary Report

Generated by FDI Lab - SciCrunch.org on Apr 17, 2025

Phospho-(Ser/Thr) ATM/ATR Substrate (S*/T*QG) (P-S/T2-100) Rabbit mAb

RRID:AB_10949894

Type: Antibody

Proper Citation

(Cell Signaling Technology Cat# 6966, RRID:AB_10949894)

Antibody Information

URL: http://antibodyregistry.org/AB_10949894

Proper Citation: (Cell Signaling Technology Cat# 6966, RRID:AB_10949894)

Target Antigen: Phospho-(Ser/Thr) ATM/ATR Substrate (S*/T*QG) (P-S/T2-100) Rabbit

mAb

Host Organism: rabbit

Clonality: monoclonal

Comments: Applications: W, IP

Antibody Name: Phospho-(Ser/Thr) ATM/ATR Substrate (S*/T*QG) (P-S/T2-100) Rabbit

mAb

Description: This monoclonal targets Phospho-(Ser/Thr) ATM/ATR Substrate (S*/T*QG) (P-

S/T2-100) Rabbit mAb

Target Organism: all

Antibody ID: AB_10949894

Vendor: Cell Signaling Technology

Catalog Number: 6966

Record Creation Time: 20241016T232807+0000

Record Last Update: 20241017T004422+0000

Ratings and Alerts

No rating or validation information has been found for Phospho-(Ser/Thr) ATM/ATR Substrate (S*/T*QG) (P-S/T2-100) Rabbit mAb.

No alerts have been found for Phospho-(Ser/Thr) ATM/ATR Substrate (S*/T*QG) (P-S/T2-100) Rabbit mAb.

Data and Source Information

Source: Antibody Registry

Usage and Citation Metrics

We found 4 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Maurya D, et al. (2024) Transient caspase-mediated activation of caspase-activated DNase causes DNA damage required for phagocytic macrophage differentiation. Cell reports, 43(5), 114251.

Cai X, et al. (2024) Hippo-PKC?-NF?B signaling axis: A druggable modulator of chondrocyte responses to mechanical stress. iScience, 27(6), 109983.

Zhu C, et al. (2020) Phospho-Ser784-VCP Is Required for DNA Damage Response and Is Associated with Poor Prognosis of Chemotherapy-Treated Breast Cancer. Cell reports, 31(10), 107745.

Sun J, et al. (2018) Distinct roles of ATM and ATR in the regulation of ARP8 phosphorylation to prevent chromosome translocations. eLife, 7.