Resource Summary Report

Generated by FDI Lab - SciCrunch.org on May 19, 2025

LRP5 (D80F2) Rabbit mAb

RRID:AB_10705602

Type: Antibody

Proper Citation

(Cell Signaling Technology Cat# 5731, RRID:AB_10705602)

Antibody Information

URL: http://antibodyregistry.org/AB_10705602

Proper Citation: (Cell Signaling Technology Cat# 5731, RRID:AB_10705602)

Target Antigen: LRP5 (D80F2) Rabbit mAb

Host Organism: rabbit

Clonality: monoclonal

Comments: Applications: W, IP

Antibody Name: LRP5 (D80F2) Rabbit mAb

Description: This monoclonal targets LRP5 (D80F2) Rabbit mAb

Target Organism: rat, h, m, mouse, r, human

Antibody ID: AB_10705602

Vendor: Cell Signaling Technology

Catalog Number: 5731

Record Creation Time: 20231110T070050+0000

Record Last Update: 20241115T031306+0000

Ratings and Alerts

No rating or validation information has been found for LRP5 (D80F2) Rabbit mAb.

No alerts have been found for LRP5 (D80F2) Rabbit mAb.

Data and Source Information

Source: Antibody Registry

Usage and Citation Metrics

We found 7 mentions in open access literature.

Listed below are recent publications. The full list is available at FDI Lab - SciCrunch.org.

Kim G, et al. (2024) Gut-liver axis calibrates intestinal stem cell fitness. Cell, 187(4), 914.

Papadopoulou A, et al. (2023) Human Placental LRP5 and Sclerostin are Increased in Gestational Diabetes Mellitus Pregnancies. The Journal of clinical endocrinology and metabolism, 108(10), 2666.

Chen GT, et al. (2022) Disruption of ?-Catenin-Dependent Wnt Signaling in Colon Cancer Cells Remodels the Microenvironment to Promote Tumor Invasion. Molecular cancer research: MCR, 20(3), 468.

Feng Y, et al. (2021) Mechanical Loading-Driven Tumor Suppression Is Mediated by Lrp5-Dependent and Independent Mechanisms. Cancers, 13(2).

Liu F, et al. (2020) Suppression of Membranous LRP5 Recycling, Wnt/?-Catenin Signaling, and Colon Carcinogenesis by 15-LOX-1 Peroxidation of Linoleic Acid in PI3P. Cell reports, 32(7), 108049.

Aripaka K, et al. (2019) TRAF6 function as a novel co-regulator of Wnt3a target genes in prostate cancer. EBioMedicine, 45, 192.

Saito-Diaz K, et al. (2018) APC Inhibits Ligand-Independent Wnt Signaling by the Clathrin Endocytic Pathway. Developmental cell, 44(5), 566.