Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

The LKB1-SIK Pathway Controls Dendrite Self-Avoidance in Purkinje Cells.

Cell reports | 2018

Strictly controlled dendrite patterning underlies precise neural connection. Dendrite self-avoidance is a crucial system preventing self-crossing and clumping of dendrites. Although many cell-surface molecules that regulate self-avoidance have been identified, the signaling pathway that orchestrates it remains poorly understood, particularly in mammals. Here, we demonstrate that the LKB1-SIK kinase pathway plays a pivotal role in the self-avoidance of Purkinje cell (PC) dendrites by ensuring dendritic localization of Robo2, a regulator of self-avoidance. LKB1 is activated in developing PCs, and PC-specific deletion of LKB1 severely disrupts the self-avoidance of PC dendrites without affecting gross morphology. SIK1 and SIK2, downstream kinases of LKB1, mediate LKB1-dependent dendrite self-avoidance. Furthermore, loss of LKB1 leads to significantly decreased Robo2 levels in the dendrite but not in the cell body. Finally, restoration of dendritic Robo2 level via overexpression largely rescues the self-avoidance defect in LKB1-deficient PCs. These findings reveal an LKB1-pathway-mediated developmental program that establishes dendrite self-avoidance.

Pubmed ID: 30208308 RIS Download

Additional research tools detected in this publication

None found

Antibodies used in this publication

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Anti-Pan-Gamma-Protocadherin-Constant Antibody (antibody)

RRID:AB_2159449

This monoclonal targets Pan-Gamma-protocadherin-Constant

View all literature mentions

Cre (antibody)

RRID:AB_2314229

This unknown targets

View all literature mentions

Anti-SIK3 (antibody)

RRID:AB_10800315

This polyclonal targets SIK3

View all literature mentions

Monoclonal Anti-Calbindin-D-28K antibody produced in mouse (antibody)

RRID:AB_476894

This monoclonal targets Calbindin-D-28K antibody produced in mouse

View all literature mentions

Anti-LKB1 (antibody)

RRID:AB_11214487

This polyclonal targets LKB1

View all literature mentions

Microsoft Excel (software resource)

RRID:SCR_016137

Software application with data analysis tools and spreadsheet templates to track and visualize data. It is used to manage and process data.

View all literature mentions

ZEISS ZEN Microscopy Software (software resource)

RRID:SCR_013672

User interface software for Carl Zeiss light microscopy imaging systems. ZEN is the universal user interface you will see on every imaging system from ZEISS. After selecting fluorophore, ZEN applies the necessary settings to collect and organize data.

View all literature mentions

ImageJ (software resource)

RRID:SCR_003070

Open source Java based image processing software program designed for scientific multidimensional images. ImageJ has been transformed to ImageJ2 application to improve data engine to be sufficient to analyze modern datasets.

View all literature mentions

STOCK Stk11tm1.1Sjm/J (organism)

RRID:IMSR_JAX:014143

Mus musculus with name STOCK Stk11tm1.1Sjm/J from IMSR.

View all literature mentions

C57BL/6J (organism)

RRID:IMSR_JAX:000664

Mus musculus with name C57BL/6J from IMSR.

View all literature mentions