Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Fingolimod (FTY720) is not protective in the subacute MPTP mouse model of Parkinson's disease and does not lead to a sustainable increase of brain-derived neurotrophic factor.

Journal of neurochemistry | 2018

Parkinson's disease (PD) is characterized by the loss of midbrain dopaminergic neurons and aggregates of α-synuclein termed Lewy bodies. Fingolimod (FTY720) is an agonist of sphingosine-1 phosphate receptors and an approved oral treatment for multiple sclerosis. Fingolimod elevates brain-derived neurotrophic factor (BDNF), an important neurotrophic factor for dopaminergic neurons. BDNF and fingolimod are beneficial in several animal models of PD. In order to validate the therapeutic potential of fingolimod for the treatment of PD, we tested its effect in the subacute MPTP mouse model of PD. MPTP or vehicle was applied i.p. in doses of 30 mg/kg MPTP on five consecutive days. In order to recapitulate the combination of dopamine loss and α-synuclein aggregates found in PD, MPTP was first administered in Thy1-A30P-α-synuclein transgenic mice. Fingolimod was administered i.p. at a dose of 0.1 mg/kg every second day. Nigrostriatal degeneration was assayed by stereologically counting the number of dopaminergic neurons in the substantia nigra pars compacta, by analysing the concentration of catecholamines and the density of dopaminergic fibres in the striatum. MPTP administration produced a robust nigrostriatal degeneration, comparable to previous studies. Unexpectedly, we found no difference between mice with and without fingolimod treatment, neither at baseline, nor at 14 or 90 days after MPTP. Also, we found no effect of fingolimod in the subacute MPTP mouse model when we used wildtype mice instead of α-synuclein transgenic mice, and no effect with an increased dose of 1 mg/kg fingolimod administered every day. In order to explain these findings, we analysed BDNF regulation by fingolimod. We did find an increase of BDNF protein after a single injection of fingolimod 0.1 or 1.0 mg/kg, but not after multiple injections, indicating that the BDNF response to fingolimod is unsustainable over time. Taken together we did not observe a neuroprotective effect of fingolimod in the subacute MPTP mouse model of PD. We discuss possible explanations for this discrepancy with previous findings and conclude fingolimod might be beneficial for the nonmotor symptoms of PD. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* and *Open Data* because it provided all relevant information to reproduce the study in the manuscript and because it made the data publicly available. The data can be accessed at https://osf.io/6xgfn/. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.

Pubmed ID: 30152864 RIS Download

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


C57BL/6J (organism)

RRID:IMSR_JAX:000664

Mus musculus with name C57BL/6J from IMSR.

View all literature mentions

C57BL/6J (organism)

RRID:IMSR_JAX:000664

Mus musculus with name C57BL/6J from IMSR.

View all literature mentions