Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Muscle Directs Diurnal Energy Homeostasis through a Myokine-Dependent Hormone Module in Drosophila.

Current biology : CB | 2017

Inter-tissue communication is critical to control organismal energy homeostasis in response to temporal changes in feeding and activity or external challenges. Muscle is emerging as a key mediator of this homeostatic control through consumption of lipids, carbohydrates, and amino acids, as well as governing systemic signaling networks. However, it remains less clear how energy substrate usage tissues, such as muscle, communicate with energy substrate storage tissues in order to adapt with diurnal changes in energy supply and demand. Using Drosophila, we show here that muscle plays a crucial physiological role in promoting systemic synthesis and accumulation of lipids in fat storage tissues, which subsequently impacts diurnal changes in circulating lipid levels. Our data reveal that the metabolic transcription factor Foxo governs expression of the cytokine unpaired 2 (Upd2) in skeletal muscle, which acts as a myokine to control glucagon-like adipokinetic hormone (AKH) secretion from specialized neuroendocrine cells. Circulating AKH levels in turn regulate lipid homeostasis in fat body/adipose and the intestine. Our data also reveal that this novel myokine-dependent hormone module is critical to maintain diurnal rhythms in circulating lipids. This tissue crosstalk provides a putative mechanism that allows muscle to integrate autonomous energy demand with systemic energy storage and turnover. Together, these findings reveal a diurnal inter-tissue signaling network between muscle and fat storage tissues that constitutes an ancestral mechanism governing systemic energy homeostasis.

Pubmed ID: 28669758 RIS Download

Associated grants

  • Agency: NIDDK NIH HHS, United States
    Id: R01 DK108930

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Goat Anti-Rabbit IgG (H + L)-HRP Conjugate (antibody)

RRID:AB_11125142

This polyclonal secondary targets IgG (H+L)

View all literature mentions

alpha Actinin antibody [MAC 276] (antibody)

RRID:AB_867496

This monoclonal targets alpha Actinin antibody [MAC 276]

View all literature mentions

β-Actin Antibody (antibody)

RRID:AB_330288

This polyclonal targets β-actin

View all literature mentions

Phospho-Drosophila Akt (Ser505) Antibody (antibody)

RRID:AB_331414

This polyclonal targets Phospho-Drosophila Akt (Ser505)

View all literature mentions

FlyMine (software resource)

RRID:SCR_002694

An integrated database of genomic, expression and protein data for Drosophila, Anopheles, C. elegans and other organisms. You can run flexible queries, export results and analyze lists of data. FlyMine presents data in categories, with each providing information on a particular type of data (for example Gene Expression or Protein Interactions). Template queries, as well as the QueryBuilder itself, allow you to perform searches that span data from more than one category. Advanced users can use a flexible query interface to construct their own data mining queries across the multiple integrated data sources, to modify existing template queries or to create your own template queries. Access our FlyMine data via our Application Programming Interface (API). We provide client libraries in the following languages: Perl, Python, Ruby and & Java API

View all literature mentions

ImageJ (software resource)

RRID:SCR_003070

Open source Java based image processing software program designed for scientific multidimensional images. ImageJ has been transformed to ImageJ2 application to improve data engine to be sufficient to analyze modern datasets.

View all literature mentions