Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Transcriptome analyses of taste organoids reveal multiple pathways involved in taste cell generation.

Scientific reports | 2017

Taste cells undergo constant turnover throughout life; however, the molecular mechanisms governing taste cell generation are not well understood. Using RNA-Seq, we systematically surveyed the transcriptome landscape of taste organoids at different stages of growth. Our data show the staged expression of a variety of genes and identify multiple signaling pathways underlying taste cell differentiation and taste stem/progenitor cell proliferation. For example, transcripts of taste receptors appear only or predominantly in late-stage organoids. Prior to that, transcription factors and other signaling elements are upregulated. RNA-Seq identified a number of well-characterized signaling pathways in taste organoid cultures, such as those involving Wnt, bone morphogenetic proteins (BMPs), Notch, and Hedgehog (Hh). By pharmacological manipulation, we demonstrate that Wnt, BMPs, Notch, and Hh signaling pathways are necessary for taste cell proliferation, differentiation and cell fate determination. The temporal expression profiles displayed by taste organoids may also lead to the identification of currently unknown transducer elements underlying sour, salt, and other taste qualities, given the staged expression of taste receptor genes and taste transduction elements in cultured organoids.

Pubmed ID: 28638111 RIS Download

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Thermo Fisher Scientific (tool)

RRID:SCR_008452

Commercial vendor and service provider of laboratory reagents and antibodies. Supplier of scientific instrumentation, reagents and consumables, and software services.

View all literature mentions

Jackson Laboratory (tool)

RRID:SCR_004633

An independent, nonprofit organization focused on mammalian genetics research to advance human health. Their mission is to discover the genetic basis for preventing, treating, and curing human disease, and to enable research for the global biomedical community. Jackson Laboratory breeds and manages colonies of mice as resources for other research institutions and laboratories, along with providing software and techniques. Jackson Lab also conducts genetic research and provides educational material for various educational levels.

View all literature mentions

DAVID (tool)

RRID:SCR_001881

Bioinformatics resource system including web server and web service for functional annotation and enrichment analyses of gene lists. Consists of comprehensive knowledgebase and set of functional analysis tools. Includes gene centered database integrating heterogeneous gene annotation resources to facilitate high throughput gene functional analysis.

View all literature mentions

PeproTech (tool)

RRID:SCR_006802

An Antibody supplier

View all literature mentions

Penn Flow Cytometry and Cell Sorting Resource Laboratory (tool)

RRID:SCR_010011

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on June 1,2023. Core facility that provides the following services: Flow cytometry analysis service, Cell sorting and analysis service, Flow cytometer analyzer access, Introductory flow cytometry training, Advanced and customized flow cytometry training, Flow cytometry consultation service, FACSAria training, Flow cytometry data analysis, BSL2+ biohazardous human cell sorting, BSL2+ murine biohazardous cell sorting, BSL2+ murine cell sorting access, Non-infectious cell sorting access. The Flow Cytometry and Cell Sorting Resource Laboratory is currently recognized as one of the largest and most comprehensive flow cytometry laboratories in the US. In 2010 it was designated a laboratory of exceptional merit by the National Cancer Institute. Using state-of-the-art technology, the resource provides a broad array of, instrumentation, support, education and consultation to the research community at the University of Pennsylvania. A wide variety of cell sorting applications are supported, from high-speed multicolor (up to 14 colors) cell sorting to low-speed, large nozzle, improved viability sorting. Additionally, a wide variety of cell analysis services (up to 20 parameters) are offered, from traditional analog, easier to use tabletop analyzers to many-laser, many-color, high-speed, fully-digital modern instrumentation. Currently the facility offers 6 cell sorters and 19 analytical instruments. A very active training and consultation program is in place to support these activities. The Scientific Director, Dr. Jonni Moore, and the Technical Director, each have over 25 years experience in the field of cytomics. Researchers at the University of Pennsylvania are increasingly engaged in research projects that require 8-plus-parameter cell sorting of infectious cells and primary human tissues. Investigators using the Flow Cytometry and Cell Sorting Shared Resource have access to virtually any type of cytometric services required for a vast array of applications.

View all literature mentions

edgeR (tool)

RRID:SCR_012802

Bioconductor software package for Empirical analysis of Digital Gene Expression data in R. Used for differential expression analysis of RNA-seq and digital gene expression data with biological replication.

View all literature mentions

Mouse Carbonic Anhydrase IV Affinity Purified Polyclonal Ab (antibody)

RRID:AB_2070332

This polyclonal targets Mouse Carbonic Anhydrase IV Affinity Purified Ab

View all literature mentions

Galpha gust (I-20) (antibody)

RRID:AB_673678

This polyclonal targets gustducin, aa 93-112

View all literature mentions