Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Rosiglitazone inhibits expression and secretion of PEDF in adipose tissue and liver of male SD rats via a PPAR-γ independent mechanism.

Endocrinology | 2014

Pigment epithelium-derived factor (PEDF) plays an important role in insulin resistance (IR). The study aims to investigate the effect of rosiglitazone, an insulin sensitizer, on PEDF production and release both in vivo and in vitro. Male SD rats were divided into normal control group, high-fat group, and rosiglitazone group. Hyperinsulinemic euglycemic clamp was performed to evaluate insulin sensitivity. IR models of 3T3-L1 adipocytes and HepG2 cells were established by the hyperinsulinemic method. Glucose uptake was examined to validate IR of adipocytes, and phosphorylation of protein kinase B and glycogen synthesis kinase 3β were examined to validate IR of HepG2 cells. Rosiglitazone, 2-chloro-5-nitro-N-phenylbenzamide (GW9662, an inhibitor of peroxisome proliferator-activated receptor-γ), and compound C (inhibitor of AMP-activated protein kinase [AMPK]) were used for the in vitro intervention. In vivo, the high-fat group showed increased serum PEDF levels, which negatively correlated with insulin sensitivity, whereas the rosiglitazone treatment decreased the serum PEDF and down-regulated PEDF expression in fat and liver of the obese rats, concomitant with significantly enhanced insulin sensitivity. In vitro, the IR cells showed increased PEDF secretion and expression, whereas rosiglitazone lowered PEDF secretion and expression, accompanied with increased insulin sensitivity. Interestingly, combination with 2-chloro-5-nitro-N-phenylbenzamide did not influence the effect of rosiglitazone on PEDF. However, rosiglitazone stimulated AMPK phosphorylation in fat and liver of the obese rats, whereas in vitro, when combined with compound C, the effect of rosiglitazone on PEDF was abrogated. In summary, rosiglitazone inhibits the expression and secretion of PEDF in fat and liver via promoting AMPK phosphorylation rather than peroxisome proliferator-activated receptor-γ, and changes of PEDF induced by rosiglitazone are closely associated with IR improvement.

Pubmed ID: 24424059 RIS Download

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Phospho-GSK-3 (Ser9) (D85E12) XP Rabbit mAb (antibody)

RRID:AB_10013750

This monoclonal targets Phospho-GSK-3 (Ser9)

View all literature mentions

Phospho-Akt (Ser473) Antibody (antibody)

RRID:AB_329825

This polyclonal targets Phospho-Akt (Ser473)

View all literature mentions

Goat Anti-Mouse IgG, HRP conjugate (antibody)

RRID:AB_390192

This polyclonal secondary targets IgG

View all literature mentions

GSK-3beta (27C10) Rabbit mAb (antibody)

RRID:AB_490890

This monoclonal targets GSK-3beta (27C10) Rabbit mAb

View all literature mentions

Anti-β-Actin Antibody (C4) (antibody)

RRID:AB_626632

This monoclonal targets β-Actin

View all literature mentions

goat anti-rabbit IgG-HRP (antibody)

RRID:AB_631747

This polyclonal targets Rabbit IgG

View all literature mentions

PEDF (H-125) (antibody)

RRID:AB_654359

This polyclonal targets SERPINF1

View all literature mentions

Akt (pan) (C67E7) Rabbit mAb (antibody)

RRID:AB_915783

This monoclonal targets Akt (pan) (C67E7) Rabbit mAb

View all literature mentions