Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Precocious puberty and Leydig cell hyperplasia in male mice with a gain of function mutation in the LH receptor gene.

Endocrinology | 2013

The LH receptor (LHR) is critical for steroidogenesis and gametogenesis. Its essential role is underscored by the developmental and reproductive abnormalities that occur due to genetic mutations identified in the human LHR. In males, activating mutations are associated with precocious puberty and Leydig cell hyperplasia. To generate a mouse model for the human disease, we have introduced an aspartic acid to glycine mutation in amino acid residue 582 (D582G) of the mouse LHR gene corresponding to the most common D578G mutation found in boys with familial male-limited precocious puberty (FMPP). In transfected cells, mouse D582G mLHR exhibited constitutive activity with a 23-fold increase in basal cAMP levels compared with the wild-type receptor. A temporal study of male mice from 7 days to 24 weeks indicated that the knock-in mice with the mutated receptor (KiLHR(D582G)) exhibited precocious puberty with elevated testosterone levels as early as 7 days of age and through adulthood. Leydig cell-specific genes encoding LHR and several steroidogenic enzymes were up-regulated in KiLHR(D582G) testis. Leydig cell hyperplasia was detected at all ages, whereas Sertoli and germ cell development appeared normal. A novel finding from our studies, not previously reported in the FMPP cases, is that extensive hyperplasia is commonly found around the periphery of the testis. We further demonstrate that the hyperplasia is due to premature proliferation and precocious differentiation of adult Leydig cells in the KiLHR(D582G) testis. The KiLHR(D582G) mice provide a mouse model for FMPP, and we suggest that it is a useful model for studying pathologies associated with altered LHR signaling.

Pubmed ID: 23861372 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

None found

Associated grants

  • Agency: NICHD NIH HHS, United States
    Id: R01 HD044119
  • Agency: NICHD NIH HHS, United States
    Id: U54 HD028934
  • Agency: NICHD NIH HHS, United States
    Id: R01 HD 044119
  • Agency: NICHD NIH HHS, United States
    Id: U54-HD28934

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Anti-Sox9 (antibody)

RRID:AB_2239761

This polyclonal targets Sox9

View all literature mentions