Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

A novel α-synuclein-GFP mouse model displays progressive motor impairment, olfactory dysfunction and accumulation of α-synuclein-GFP.

Neurobiology of disease | 2013

Compelling evidence suggests that accumulation and aggregation of alpha-synuclein (α-syn) contribute to the pathogenesis of Parkinson's disease (PD). Here, we describe a novel Bacterial Artificial Chromosome (BAC) transgenic model, in which we have expressed wild-type human α-syn fused to green fluorescent protein (GFP), under control of the mouse α-syn promoter. We observed a widespread and high expression of α-syn-GFP in multiple brain regions, including the dopaminergic neurons of the substantia nigra pars compacta (SNpc) and the ventral tegmental area, the olfactory bulb as well as in neocortical neurons. With increasing age, transgenic mice exhibited reductions in amphetamine-induced locomotor activity in the open field, impaired rotarod performance and a reduced striatal dopamine release, as measured by amperometry. In addition, they progressively developed deficits in an odor discrimination test. Western blot analysis revealed that α-syn-GFP and phospho-α-syn levels increased in multiple brain regions, as the mice grew older. Further, we observed, by immunohistochemical staining for phospho-α-syn and in vivo by two-photon microscopy, the formation of α-syn aggregates as the mice aged. The latter illustrates that the model can be used to track α-syn aggregation in vivo. In summary, this novel BAC α-syn-GFP model mimics a unique set of aspects of PD progression combined with the possibility of tracking α-syn aggregation in neocortex of living mice. Therefore, this α-syn-GFP-mouse model can provide a powerful tool that will facilitate the study of α-syn biology and its involvement in PD pathogenesis.

Pubmed ID: 23643841 RIS Download

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.