Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

ZNRF1 promotes Wallerian degeneration by degrading AKT to induce GSK3B-dependent CRMP2 phosphorylation.

Nature cell biology | 2011

Wallerian degeneration is observed in many neurological disorders, and it is therefore important to elucidate the axonal degeneration mechanism to prevent, and further develop treatment for, such diseases. The ubiquitin-proteasome system (UPS) has been implicated in Wallerian degeneration, but the underlying molecular mechanism remains unclear. Here we show that ZNRF1, an E3 ligase, promotes Wallerian degeneration by targeting AKT to degrade through the UPS. AKT phosphorylates glycogen synthase kinase-3β (GSK3B), and thereby inactivates it in axons. AKT overexpression significantly delays axonal degeneration. Overexpression of the active (non-phosphorylated) form of GSK3B induces CRMP2 phosphorylation, which is required for the microtubule reorganization observed in the degenerating axon. The inhibition of GSK3B and the overexpression of non-phosphorylated CRMP2 both protected axons from Wallerian degeneration. These findings indicate that the ZNRF1-AKT-GSK3B-CRMP2 pathway plays an important role in controlling Wallerian degeneration.

Pubmed ID: 22057101 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.