Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

The receptor guanylyl cyclase Npr2 is essential for sensory axon bifurcation within the spinal cord.

The Journal of cell biology | 2007

Sensory axonal projections into the spinal cord display a highly stereotyped pattern of T- or Y-shaped axon bifurcation at the dorsal root entry zone (DREZ). Here, we provide evidence that embryonic mice with an inactive receptor guanylyl cyclase Npr2 or deficient for cyclic guanosine monophosphate-dependent protein kinase I (cGKI) lack the bifurcation of sensory axons at the DREZ, i.e., the ingrowing axon either turns rostrally or caudally. This bifurcation error is maintained to mature stages. In contrast, interstitial branching of collaterals from primary stem axons remains unaffected, indicating that bifurcation and interstitial branching are processes regulated by a distinct molecular mechanism. At a functional level, the distorted axonal branching at the DREZ is accompanied by reduced synaptic input, as revealed by patch clamp recordings of neurons in the superficial layers of the spinal cord. Hence, our data demonstrate that Npr2 and cGKI are essential constituents of the signaling pathway underlying axonal bifurcation at the DREZ and neuronal connectivity in the dorsal spinal cord.

Pubmed ID: 17954614 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Mini Analysis Program (tool)

RRID:SCR_014441

Software tool that detects peaks of any type, any shape, any direction, and any size for neuroscientists who are studying spontaneous activities. Allows detection of virtually any kind of peaks including spontaneous miniature synaptic currents and potentials, action potential spikes, calcium imaging peaks, amperometric peaks, ECG peaks etc. It includes the complex and multiple peak detection algorithm. Has post-detection analyses including essential plots and statistical parameters. Group Analysis provides specialized and detailed analysis options for action potentials, decay fitting, fEPSP/population spikes, amperometry, etc.

View all literature mentions

Mini Analysis Program (tool)

RRID:SCR_002184

Software tool that detects peaks of any type, any shape, any direction, and any size for neuroscientists who are studying spontaneous activities. Allows detection of virtually any kind of peaks including spontaneous miniature synaptic currents and potentials, action potential spikes, calcium imaging peaks, amperometric peaks, ECG peaks etc. It includes the complex and multiple peak detection algorithm. Has post-detection analyses including essential plots and statistical parameters. Group Analysis provides specialized and detailed analysis options for action potentials, decay fitting, fEPSP/population spikes, amperometry, etc.

View all literature mentions