Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Localization and kinetics of protein kinase C-epsilon anchoring in cardiac myocytes.

Biophysical journal | 2001

Protein kinase C-epsilon (PKC-epsilon) plays a central role in cardiac cell signaling, but mechanisms of translocation and anchoring upon activation are poorly understood. Conventional PKC isoforms rely on a rapid Ca2+-mediated recruitment to cell membranes, but this mechanism cannot be employed by PKC-epsilon or other PKC isoforms lacking a Ca2+-binding domain. In this study, we used recombinant green fluorescent protein (GFP) fusion constructs and confocal microscopy to examine the localization, kinetics, and reversibility of PKC-epsilon anchoring in permeabilized rat cardiac myocytes. PKC-epsilon-GFP bound with a striated pattern that co-localized with alpha-actinin, a marker of the Z-line of the sarcomere. Binding required activation of PKC and occurred slowly but reversibly with apparent rate constants of k(on) = 4.6 +/- 1.2 x 10(3) M(-1) x s(-1) and k(off) = 1.4 +/- 0.5 x 10(-3) s(-1) (t1/2 = 8 min) as determined by fluorescence recovery after photobleaching and by perfusion experiments. A truncated construct composed of the N-terminal 144-amino-acid variable region of PKC-epsilon (epsilonV1-GFP), but not an analogous N-terminal domain of PKC-delta, mimicked the Z-line decoration and slow binding rate of the full-length enzyme. These findings suggest that the epsilonV1 domain is important in determining PKC-epsilon localization and translocation kinetics in cardiac muscle. Moreover, PKC-epsilon translocation is not a diffusion-controlled binding process but instead may be limited by intramolecular conformational changes within the V1 domain. The k(off) for epsilonV1-GFP was two- to threefold faster than for full-length enzyme, indicating that other domains in PKC-epsilon contribute to anchoring by prolonging the bound state.

Pubmed ID: 11325717 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NHLBI NIH HHS, United States
    Id: P01 HL04759

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Scion Image (tool)

RRID:SCR_008673

THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 17, 2013. Commercial software vendor.

View all literature mentions