NIST Mass Spectrometry Data Center

RRID:SCR_014680
Type: Tool

Proper Citation

NIST Mass Spectrometry Data Center (RRID:SCR_014680)

Resource Information

URL: http://chemdata.nist.gov

Proper Citation: NIST Mass Spectrometry Data Center (RRID:SCR_014680)

Description: A data center that develops evaluated mass spectral libraries and provides related software tools that assist compound identification by providing reference mass spectra for GC/MS (by electron ionization) and LC-MS/MS (by tandem mass spectrometry). It also provides gas phase retention indices for GC. Resources include the mass spectral library, the peptide library, and a standard reference material guide.

Synonyms: Mass Spectrometry Data Center, MS Data Center, NIST MS Data Center

Resource Type: portal, data or information resource, organization portal

Keywords: metabolomics, metabolomics tool, peptide, mass spectrometry, compound identification, data center, portal

Resource Name: NIST Mass Spectrometry Data Center

Resource ID: SCR_014680

Alternate URLs: https://www.nist.gov/mml/biomolecular-measurement/mass-spectrometry-data-center

Ratings and Alerts

No rating or validation information has been found for NIST Mass Spectrometry Data Center.

No alerts have been found for NIST Mass Spectrometry Data Center.
Usage and Citation Metrics

We found 50 mentions in open access literature.

Listed below are recent publications. The full list is available at RRID.

Huang LJ, et al. (2023) Lipid saturation induces degradation of squalene epoxidase for sterol homeostasis and cell survival. Life science alliance, 6(1).


Brackhan M, et al. (2022) Isotope-labeled amyloid-? does not transmit to the brain in a prion-like manner after peripheral administration. EMBO reports, 23(7), e54405.


Rodríguez-Ferreiro AO, et al. (2022) LC-MS Characterization and Biological Activities of Cuban Cultivars of Schltr. Plants (Basel, Switzerland), 11(1).


Scheurer NM, et al. (2021) Homologs of Circadian Clock Proteins Impact the Metabolic Switch Between Light and Dark Growth in the Cyanobacterium sp. PCC 6803. Frontiers in plant science, 12, 675227.


Méndez D, et al. (2021) Antifungal Activity of Extracts, Fractions, and Constituents from Leaves. Pharmaceuticals (Basel, Switzerland), 14(9).


Xiong W, et al. (2021) Relieving lipid accumulation through UCP1 suppresses the progression of acute kidney injury by promoting the AMPK/ULK1/autophagy pathway. Theranostics, 11(10), 4637-4654.