MUSCLE

RRID:SCR_011812
Type: Tool

Proper Citation

MUSCLE (RRID:SCR_011812)

Resource Information

URL: http://www.ebi.ac.uk/Tools/msa/muscle/

Proper Citation: MUSCLE (RRID:SCR_011812)

Description: Multiple sequence alignment method with reduced time and space complexity. Multiple sequence alignment with high accuracy and high throughput. Data analysis service for multiple sequence comparison by log- expectation.

Abbreviations: MUSCLE

Synonyms: MUltiple Sequence Comparison by Log- Expectation

Resource Type: software resource, analysis service resource, service resource, data processing software, production service resource, alignment software, data analysis service, image analysis software, data analysis software, software application

Defining Citation: PMID:15034147, PMID:15318951, DOI:10.1093/nar/gkh340

Keywords: bio.tools

Resource Name: MUSCLE

Resource ID: SCR_011812

Alternate IDs: biotools:muscle, OMICS_00982

Ratings and Alerts

No rating or validation information has been found for MUSCLE.

No alerts have been found for MUSCLE.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 12153 mentions in open access literature.

Listed below are recent publications. The full list is available at RRID.


Weits DA, et al. (2023) Acquisition of hypoxia inducibility by oxygen sensing N-terminal cysteine oxidase in spermatophytes. Plant, cell & environment, 46(1), 322.


Rosado PM, et al. (2023) Exploring the Potential Molecular Mechanisms of Interactions between a Probiotic Consortium and Its Coral Host. mSystems, 8(1), e0092122.


Distaso MA, et al. (2023) Thermophilic Carboxylesterases from Hydrothermal Vents of the Volcanic Island of Ischia Active on Synthetic and Biobased Polymers and Mycotoxins. Applied and environmental microbiology, 89(2), e0170422.


Chen HH, et al. (2023) Engineering the ?-Carotene Metabolic Pathway of Microalgae Dunaliella To Confirm Its Carotenoid Synthesis Pattern in Comparison To Bacteria and Plants. Microbiology spectrum, 11(2), e0436122.

Fogarty EC, et al. (2023) A highly conserved and globally prevalent cryptic plasmid is among the most numerous mobile genetic elements in the human gut. bioRxiv : the preprint server for biology.