Cancer Imaging Archive (TCIA)

RRID:SCR_008927
Type: Tool

Proper Citation

Cancer Imaging Archive (TCIA) (RRID:SCR_008927)

Resource Information

URL: http://www.cancerimagingarchive.net/

Proper Citation: Cancer Imaging Archive (TCIA) (RRID:SCR_008927)

Description: Archive of medical images of cancer accessible for public download. All images are stored in DICOM file format and organized as Collections, typically patients related by common disease (e.g. lung cancer), image modality (MRI, CT, etc) or research focus. Neuroimaging data sets include clinical outcomes, pathology, and genomics in addition to DICOM images. Submitting Data Proposals are welcomed.

Abbreviations: TCIA

Synonyms: The Cancer Imaging Archive, Cancer Imaging Archive, TCIA, The Cancer Imaging Archive (TCIA), Cancer Imaging Archive (TCIA)

Resource Type: storage service resource, database, catalog, service resource, image repository, data or information resource, data repository, data set

Keywords: dicom, imaging, ct, pet, pt, x-ray, mri, magnetic resonance, medical, clinical, research, clinical neuroinformatics, computed tomography, dicom, imaging genomics, magnetic resonance, pet, spect, test data, web service, image collection, image, FASEB list

Related Condition: Cancer

Funding Agency: NCI

Availability: Restricted

Resource Name: Cancer Imaging Archive (TCIA)
Ratings and Alerts

No rating or validation information has been found for Cancer Imaging Archive (TCIA).

No alerts have been found for Cancer Imaging Archive (TCIA).

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 151 mentions in open access literature.

Listed below are recent publications. The full list is available at RRID.


Han T, et al. (2023) An immune indicator based on BTK and DPEP2 identifies hot and cold tumors and clinical treatment outcomes in lung adenocarcinoma. Scientific reports, 13(1), 5153.


Li X, et al. (2023) SIFT-GVF-based lung edge correction method for correcting the lung region in CT images. PloS one, 18(2), e0282107.

Wang B, et al. (2023) Prognostic value of 18F-FDG PET/CT-based radiomics combining

Lavinia Loeffler CM, et al. (2023) Direct prediction of Homologous Recombination Deficiency from routine histology in ten different tumor types with attention-based Multiple Instance Learning: a development and validation study. medRxiv : the preprint server for health sciences.

Cai H, et al. (2023) An Online Mammography Database with Biopsy Confirmed Types. Scientific data, 10(1), 123.


He J, et al. (2023) MTF1 has the potential as a diagnostic and prognostic marker for gastric cancer and is associated with good prognosis. Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico, 1.


Lin P, et al. (2023) Molecular hallmarks of breast multiparametric magnetic resonance imaging during neoadjuvant chemotherapy. La Radiologia medica, 128(2), 171.


Chandrashekar A, et al. (2022) A deep learning pipeline to simulate fluorodeoxyglucose (FDG) uptake in head and neck cancers using non-contrast CT images without the administration of radioactive tracer. Insights into imaging, 13(1), 45.


cross-institute study. Insights into imaging, 13(1), 82.