HPRD - Human Protein Reference Database

RRID:SCR_007027
Type: Tool

Proper Citation

HPRD - Human Protein Reference Database (RRID:SCR_007027)

Resource Information

URL: http://www.hprd.org

Proper Citation: HPRD - Human Protein Reference Database (RRID:SCR_007027)

Description: Database that represents a centralized platform to visually depict and integrate information pertaining to domain architecture, post-translational modifications, interaction networks and disease association for each protein in the human proteome. All the information in HPRD has been manually extracted from the literature by expert biologists who read, interpret and analyze the published data.

Abbreviations: HPRD

Synonyms: Human Protein Reference Database

Resource Type: data or information resource, database

Defining Citation: PMID:18988627, PMID:16381900, PMID:14525934

Keywords: protein, disease, network, post-translational, proteome, protein binding, proteins, protein c, pathway, protein-protein interaction, protein expression, subcellular localization, phosphorylation motif, signaling pathway, protein sequence, blast, molecule, domain, motif, post-translational modification, protein isoform, FASEB list

Availability: Acknowledgement requested, Free, Non-commercial, Commercial requires license

Resource Name: HPRD - Human Protein Reference Database

Resource ID: SCR_007027
Alternate IDs: nif-0000-00137

Ratings and Alerts

No rating or validation information has been found for HPRD - Human Protein Reference Database.

No alerts have been found for HPRD - Human Protein Reference Database.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 1174 mentions in open access literature.

Listed below are recent publications. The full list is available at RRID.


Mukamel DB, et al. (2023) Association of Staffing Instability With Quality of Nursing Home Care. JAMA network open, 6(1), e2250389.


Egbert CM, et al. (2023) The Integration of Proteome-Wide PTM Data with Protein Structural and Sequence Features Identifies Phosphorylations that Mediate 14-3-3 Interactions. Journal of molecular biology, 435(2), 167890.

Wang X, et al. (2023) Cross-Talk between N6-Methyladenosine and Their Related RNAs
Defined a Signature and Confirmed m6A Regulators for Diagnosis of Endometriosis. International journal of molecular sciences, 24(2).


