NeuroSynth

RRID:SCR_006798
Type: Tool

Proper Citation

NeuroSynth (RRID:SCR_006798)

Resource Information

URL: http://neurosynth.org

Proper Citation: NeuroSynth (RRID:SCR_006798)

Description: Platform for large-scale, automated synthesis of functional magnetic resonance imaging (fMRI) data extracted from published articles. It's a website wrapped around a set of open-source Python and JavaScript packages. Neurosynth lets you run crude but useful analyses of fMRI data on a very large scale. You can: * Interactively visualize the results of over 3,000 term-based meta-analyses * Select specific locations in the human brain and view associated terms * Browse through the nearly 10,000 studies in the database Their ultimate goal is to enable dynamic real-time analysis, so that you'll be able to select foci, tables, or entire studies for analysis and run a full-blown meta-analysis without leaving your browser. You'll also be able to do things like upload entirely new images and obtain probabilistic estimates of the cognitive states most likely to be associated with the image.

Abbreviations: Neurosynth

Synonyms: Neurosynth.org

Resource Type: source code, data or information resource, software resource, database

Defining Citation: PMID:21706013

Keywords: activation foci, magnetic resonance imaging assay, brain, human, fMRI, neuroimaging, python, image, functional neuroimaging, FASEB list

Funding Agency: NIMH

Availability: Neurosynth Automated Coordinate Extraction (ACE) tools under, Open unspecified license, Open Software License, v3,
Resource Name: NeuroSynth

Resource ID: SCR_006798

Alternate IDs: nlx_55906


Ratings and Alerts

No rating or validation information has been found for NeuroSynth.

No alerts have been found for NeuroSynth.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 780 mentions in open access literature.

Listed below are recent publications. The full list is available at RRID.


Castrellon JJ, et al. (2023) Social cognitive processes explain bias in juror decisions. Social cognitive and affective neuroscience, 18(1).


James KM, et al. (2023) Adolescents’ neural reactivity to parental criticism is associated with diminished happiness during daily interpersonal situations. Social cognitive and affective neuroscience, 18(1).

Scholz C, et al. (2023) Invoking self-related and social thoughts impacts online information sharing. Social cognitive and affective neuroscience, 18(1).


Pluta A, et al. (2023) Exposure to hate speech deteriorates neurocognitive mechanisms of the ability to understand others’ pain. Scientific reports, 13(1), 4127.