PredictSNP

RRID: SCR_006327
Type: Tool

Proper Citation

PredictSNP (RRID:SCR_006327)

Resource Information

URL: http://loschmidt.chemi.muni.cz/predictsnp/

Proper Citation: PredictSNP (RRID:SCR_006327)

Description: Consensus classifier tool that combines six of the top performing tools for the prediction of the effects of mutation on protein function. The obtained results are provided together with annotations extracted from the Protein Mutant Database and the UniProt database. A stand-alone version is also available.

Abbreviations: PredictSNP

Synonyms: PredictSNP - Consensus classifier for prediction of disease-related mutations

Resource Type: software resource, analysis service resource, service resource, production service resource, data analysis service

Defining Citation: PMID:24453961

Keywords: single nucleotide polymorphism, classifier, prediction, mutation, protein function, FASEB list

Availability: Free for academic use

Resource Name: PredictSNP

Resource ID: SCR_006327

Alternate IDs: OMICS_02218

Ratings and Alerts
No rating or validation information has been found for PredictSNP.

No alerts have been found for PredictSNP.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 101 mentions in open access literature.

Listed below are recent publications. The full list is available at RRID.

Kumar S, et al. (2022) Omicron (BA.1) and sub-variants (BA.1.1, BA.2, and BA.3) of SARS-CoV-2 spike infectivity and pathogenicity: A comparative sequence and structural-based...

Singh AK, et al. (2022) Contrasting Distribution of SARS-CoV-2 Lineages across Multiple Rounds of Pandemic Waves in West Bengal, the Gateway of East and North-East States of India. Microbiology spectrum, 10(4), e0091422.

Peres KC, et al. (2021) Clinical utility of TGFB1 and its receptors (TGFR1 and TGFR2) in thyroid nodules: evaluation based on single nucleotide polymorphisms and mRNA analysis. Archives of endocrinology and metabolism, 65(2), 172.

Bug DS, et al. (2021) Towards Understanding the Pathogenicity of DROSHA Mutations in Oncohematology. Cells, 10(9).