SGD

RRID:SCR_004694
Type: Tool

Proper Citation

SGD (RRID:SCR_004694)

Resource Information

URL: http://www.yeastgenome.org/

Proper Citation: SGD (RRID:SCR_004694)

Description: A curated database that provides comprehensive integrated biological information for Saccharomyces cerevisiae along with search and analysis tools to explore these data. SGD allows researchers to discover functional relationships between sequence and gene products in fungi and higher organisms. The SGD also maintains the S. cerevisiae Gene Name Registry, a complete list of all gene names used in S. cerevisiae which includes a set of general guidelines to gene naming. Protein Page provides basic protein information calculated from the predicted sequence and contains links to a variety of secondary structure and tertiary structure resources. Yeast Biochemical Pathways allows users to view and search for biochemical reactions and pathways that occur in S. cerevisiae as well as map expression data onto the biochemical pathways. Literature citations are provided where available.

Abbreviations: SGD, SGD LOCUS, SGD REF

Synonyms: Saccharomyces Genome Database, SGD LOCUS, SGD REF, Saccharomyces Genome Database

Resource Type: data or information resource, database

Defining Citation: PMID:24265222, PMID:12519985, PMID:9399804

Keywords: database, yeast, pathway, analysis, gene, nomenclature, predicted sequence, fungi, functional relationship, protein structure, bio.tools, FASEB list

Funding Agency: NHGRI, NHGRI, NHGRI, NHGRI, NHGRI
Availability: Free for academic use, The community can contribute to this resource, Non-commercial

Resource Name: SGD

Resource ID: SCR_004694

Alternate IDs: nif-0000-03456, OMICS_01661, biotools:sgd

Alternate URLs: https://bio.tools/sgd

Old URLs: http://genome-www.stanford.edu/Saccharomyces/

Ratings and Alerts

No rating or validation information has been found for SGD.

No alerts have been found for SGD.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 1791 mentions in open access literature.

Listed below are recent publications. The full list is available at RRID.

Shibasaki S, et al. (2023) Progress of Molecular Display Technology Using Saccharomyces cerevisiae to Achieve Sustainable Development Goals. Microorganisms, 11(1).

Antunovics Z, et al. (2023) Synthetic two-species allopolyploid and three-species allotetraploid Saccharomyces hybrids with euploid (complete) parental subgenomes. Scientific reports, 13(1), 1112.

Anwar A, et al. (2023) BrCYP71A15 Negatively Regulates Hg Stress Tolerance by Modulating Cell Wall Biosynthesis in Yeast. Plants (Basel, Switzerland), 12(4).

Shamsuzzaman M, et al. (2023) Inhibition of Ribosome Assembly and Ribosome Translation Has Distinctly Different Effects on Abundance and Paralogue Composition of Ribosomal Protein mRNAs in Saccharomyces cerevisiae. mSystems, 8(1), e0109822.

Utsumi R, et al. (2023) Foci-forming regions of pyruvate kinase and enolase at the molecular surface incorporate proteins into yeast cytoplasmic metabolic enzymes transiently assembling (META) bodies. PloS one, 18(4), e0283002.

Mastella L, et al. (2023) Scheffersomyces stipitis ability to valorize different residual biomasses for vitamin B9 production. Microbial biotechnology, 16(2), 392.

Bari KA, et al. (2023) Tra1 controls the transcriptional landscape of the aging cell. G3 (Bethesda, Md.), 13(1).

Islam MD, et al. (2023) Do mitochondria use efflux pumps to protect their ribosomes from antibiotics? Microbiology (Reading, England), 169(1).

Spasskaya DS, et al. (2023) Yeast Ribonucleotide Reductase Is a Direct Target of the Proteasome and Provides Hyper Resistance to the Carcinogen 4-NQO. Journal of fungi (Basel, Switzerland), 9(3).

Trotta E, et al. (2022) GC content strongly influences the role of poly(dA) in the intrinsic nucleosome positioning in Saccharomyces cerevisiae. Yeast (Chichester, England), 39(4), 262.