Gene Expression Nervous System Atlas

RRID:SCR_002721
Type: Tool

Proper Citation

Gene Expression Nervous System Atlas (RRID:SCR_002721)

Resource Information

URL: http://www.gensat.org/

Proper Citation: Gene Expression Nervous System Atlas (RRID:SCR_002721)

Description: Gene expression data and maps of mouse central nervous system. Gene expression atlas of developing adult central nervous system in mouse, using in situ hybridization and transgenic mouse techniques. Collection of pictorial gene expression maps of brain and spinal cord of mouse. Provides tools to catalog, map, and electrophysiologically record individual cells. Application of Cre recombinase technologies allows for cell-specific gene manipulation. Transgenic mice created by this project are available to scientific community.

Abbreviations: GENSAT

Synonyms: Gene Expression Nervous System Atlas, GENSAT

Resource Type: biomaterial supply resource, material resource, organism supplier

Keywords: molecular neuroanatomy resource, gene expression, cre mice, rodent, adult mouse, development, developing mouse, histology, annotation, central nervous system, in situ hybridization, mutant mouse strain, brain, spinal cord, transgenic bac-egfp reporter, bac-cre recombinase driver mouse line, transgenic mouse, young mouse, genetics, neurology, bac, transgenic, histology, annotation, bioinformatics, FASEB list

Funding Agency: NIH, NIH Blueprint for Neuroscience Research, NINDS

Availability: Free, Freely available

Resource Name: Gene Expression Nervous System Atlas
Resource ID: SCR_002721

Alternate IDs: nif-0000-00130

Alternate URLs: http://www.gensat.org/index.html

Ratings and Alerts

No rating or validation information has been found for Gene Expression Nervous System Atlas.

No alerts have been found for Gene Expression Nervous System Atlas.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 298 mentions in open access literature.

Listed below are recent publications. The full list is available at RRID.

Bjerke IE, et al. (2022) DOPAMAP, high-resolution images of dopamine 1 and 2 receptor expression in developing and adult mouse brains. Scientific data, 9(1), 175.

Madalena KM, et al. (2022) Genetic deletion of the glucocorticoid receptor in Cx3cr1+ myeloid cells is neuroprotective and improves motor recovery after spinal cord injury. Experimental neurology, 355, 114114.

Wilke SA, et al. (2022) Convergence of Clinically Relevant Manipulations on Dopamine-Regulated Prefrontal Activity Underlying Stress Coping Responses. Biological psychiatry, 91(9), 810.

Morgenstern NA, et al. (2022) Pyramidal tract neurons drive amplification of excitatory inputs to striatum through cholinergic interneurons. Science advances, 8(6), eabh4315.

Fazel Darbandi S, et al. (2022) LiCl treatment leads to long-term restoration of spine maturation and synaptogenesis in adult Tbr1 mutants. Journal of neurodevelopmental disorders, 14(1), 11.

Blackwell DJ, et al. (2022) The Purkinje-myocardial junction is the anatomic origin of ventricular arrhythmia in CPVT. JCI insight, 7(3).
