EcoCyc
RRID:SCR_002433
Type: Tool

Proper Citation
EcoCyc (RRID:SCR_002433)

Resource Information

URL: http://ecocyc.org/

Proper Citation: EcoCyc (RRID:SCR_002433)

Description: Database for the bacterium Escherichia coli K-12 MG1655, the EcoCyc project performs literature-based curation of the entire genome, and of transcriptional regulation, transporters, and metabolic pathways. The long-term goal of the project is to describe the molecular catalog of the E. coli cell, as well as the functions of each of its molecular parts, to facilitate a system-level understanding of E. coli. EcoCyc is an electronic reference source for E. coli biologists, and for biologists who work with related microorganisms.

Abbreviations: EcoCyc, EcoCyc REF

Synonyms: EcoCyc REF

Resource Type: data or information resource, database

Defining Citation: PMID:23143106, PMID:21097882

Keywords: genome, metabolic pathway, transcription, transporters, escherichia coli, transcriptional regulation, metabolism, pathway, FASEB list

Funding Agency: NCRR, NIGMS, NIGMS

Resource Name: EcoCyc

Resource ID: SCR_002433

Alternate IDs: nif-0000-02783, OMICS_01645
Ratings and Alerts

No rating or validation information has been found for EcoCyc.

No alerts have been found for EcoCyc.

Data and Source Information

Source:  SciCrunch Registry

Usage and Citation Metrics

We found 372 mentions in open access literature.

Listed below are recent publications. The full list is available at RRID.

Iyer MS, et al. (2023) A Systems Biology Approach To Disentangle the Direct and Indirect Effects of Global Transcription Factors on Gene Expression in Escherichia coli. Microbiology spectrum, 11(2), e0210122.


Malykh EA, et al. (2023) H+-Translocating Membrane-Bound Pyrophosphatase from Rhodospirillum rubrum Fuels Escherichia coli Cells via an Alternative Pathway for Energy
Lai YH, et al. (2023) Molecular Signatures of the Eagle Effect Induced by the Artificial Siderophore Conjugate LP-600 in E. coli. ACS infectious diseases, 9(3), 567.


Smakman F, et al. (2022) Exposure to lysed bacteria can promote or inhibit growth of neighboring live bacteria depending on local abiotic conditions. FEMS microbiology ecology, 98(2).

