Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
on page 1 showing 20 out of 398 results from 1 sources

Cite this (1000 Genomes: A Deep Catalog of Human Genetic Variation, RRID:SCR_006828)

URL: http://www.1000genomes.org/

Resource Type: Resource, organization portal, database, consortium, data set, portal, data or information resource

International collaboration producing an extensive public catalog of human genetic variation, including SNPs and structural variants, and their haplotype contexts, in an effort to provide a foundation for investigating the relationship between genotype and phenotype. The genomes of about 2500 unidentified people from about 25 populations around the world were sequenced using next-generation sequencing technologies. Redundant sequencing on various platforms and by different groups of scientists of the same samples can be compared. The results of the study are freely and publicly accessible to researchers worldwide. The consortium identified the following populations whose DNA will be sequenced: Yoruba in Ibadan, Nigeria; Japanese in Tokyo; Chinese in Beijing; Utah residents with ancestry from northern and western Europe; Luhya in Webuye, Kenya; Maasai in Kinyawa, Kenya; Toscani in Italy; Gujarati Indians in Houston; Chinese in metropolitan Denver; people of Mexican ancestry in Los Angeles; and people of African ancestry in the southwestern United States. The goal Project is to find most genetic variants that have frequencies of at least 1% in the populations studied. Sequencing is still too expensive to deeply sequence the many samples being studied for this project. However, any particular region of the genome generally contains a limited number of haplotypes. Data can be combined across many samples to allow efficient detection of most of the variants in a region. The Project currently plans to sequence each sample to about 4X coverage; at this depth sequencing cannot provide the complete genotype of each sample, but should allow the detection of most variants with frequencies as low as 1%. Combining the data from 2500 samples should allow highly accurate estimation (imputation) of the variants and genotypes for each sample that were not seen directly by the light sequencing. All samples from the 1000 genomes are available as lymphoblastoid cell lines (LCLs) and LCL derived DNA from the Coriell Cell Repository as part of the NHGRI Catalog. The sequence and alignment data generated by the 1000genomes project is made available as quickly as possible via their mirrored ftp sites. ftp://ftp.1000genomes.ebi.ac.uk ftp://ftp-trace.ncbi.nlm.nih.gov/1000genomes

  • From Current Category

    3DSwap

Cite this (3DSwap, RRID:SCR_004133)

URL: http://caps.ncbs.res.in/3dswap/index.html

Resource Type: Resource, data or information resource, database

Curated knowledegbase of protein structures that are reported to be involved in 3-dimensional domain swapping. 3DSwap provides literature curated information and structure related information about 3D domain swapping in proteins. Information about swapping, hinge region, swapped region, extent of swapping, etc. are extracted from original research publications after extensive literature curation.

  • From Current Category

    4Peaks

Cite this (4Peaks, RRID:SCR_000015)

URL: http://nucleobytes.com/index.php/4peaks

Resource Type: Resource, software resource, software application, commercial organization

Software application for viewing and editing sequence trace files.

  • From Current Category

Cite this (5S Ribosomal RNA Database, RRID:SCR_007545)

URL: http://biobases.ibch.poznan.pl/5SData/

Resource Type: Resource, data or information resource, database

A database on nucleotide sequences of 5S rRNAs and their genes. The database contains 1985 primary structures of 5S rRNA and 5S rDNA, and was last updated in 2002, according to the website. They include 60 archaebacterial, 470 eubacterial, 63 plastid, nine mitochondrial and 1383 eukaryotic sequences. The nucleotide sequences of the 5S rRNAs or 5S rDNAs are divided according to the taxonomic position of the source organisms. The sequences for particular organisms can be retrieved as single files using a taxonomic browser or in multiple sequence structural alignments. The multiple sequence alignments of 5S ribosomal RNAs can be downloaded in TAB-delimited and FASTA formats.

  • From Current Category

Cite this (ABS: A Database of Annotated Regulatory Binding Sites From Orthologous Promoters, RRID:SCR_002276)

URL: http://genome.imim.es/datasets/abs2005/index.html

Resource Type: Resource, data or information resource, database

Public database of known binding sites identified in promoters of orthologous vertebrate genes that have been manually curated from bibliography. We have annotated 650 experimental binding sites from 68 transcription factors and 100 orthologous target genes in human, mouse, rat or chicken genome sequences. Computational predictions and promoter alignment information are also provided for each entry. For each gene, TFBSs conserved in orthologous sequences from at least two different species must be available. Promoter sequences as well as the original GenBank or RefSeq entries are additionally supplied in case of future identification conflicts. The final TSS annotation has been refined using the database dbTSS. Up to this release, 500 bps upstream the annotated transcription start site (TSS) according to REFSEQ annotations have been always extracted to form the collection of promoter sequences from human, mouse, rat and chicken. For each regulatory site, the position, the motif and the sequence in which the site is present are available in a simple format. Cross-references to EntrezGene, PubMed and RefSeq are also provided for each annotation. Apart from the experimental promoter annotations, predictions by popular collections of weight matrices are also provided for each promoter sequence. In addition, global and local alignments and graphical dotplots are also available.

  • From Current Category

Cite this (AbundanceBin, RRID:SCR_004648)

URL: http://omics.informatics.indiana.edu/AbundanceBin/

Resource Type: Resource, software resource

An abundance-based software tool for binning metagenomic sequences, such that the reads classified in a bin belong to species of identical or very similar abundances. AbundanceBin also gives estimations of species abundances and their genome sizes -two important characteristic parameters for a microbial community.

  • From Current Category

    AceView

Cite this (AceView, RRID:SCR_002277)

URL: http://www.ncbi.nlm.nih.gov/ieb/research/acembly/

Resource Type: Resource, data or information resource, database

THIS RESOURCE IS NO LONGER SUPPORTED, documented August 29, 2016. AceView offers an integrated view of the human, nematode and Arabidopsis genes reconstructed by co-alignment of all publicly available mRNAs and ESTs on the genome sequence. Our goals are to offer a reliable up-to-date resource on the genes and their functions and to stimulate further validating experiments at the bench. AceView provides a curated, comprehensive and non-redundant sequence representation of all public mRNA sequences (mRNAs from GenBank or RefSeq, and single pass cDNA sequences from dbEST and Trace). These experimental cDNA sequences are first co-aligned on the genome then clustered into a minimal number of alternative transcript variants and grouped into genes. Using exhaustively and with high quality standards the available cDNA sequences evidences the beauty and complexity of mammals' transcriptome, and the relative simplicity of the nematode and plant transcriptomes. Genes are classified according to their inferred coding potential; many presumably non-coding genes are discovered. Genes are named by Entrez Gene names when available, else by AceView gene names, stable from release to release. Alternative features (promoters, introns and exons, polyadenylation signals) and coding potential, including motifs, domains, and homologies are annotated in depth; tissues where expression has been observed are listed in order of representation; diseases, phenotypes, pathways, functions, localization or interactions are annotated by mining selected sources, in particular PubMed, GAD and Entrez Gene, and also by performing manual annotation, especially in the worm. In this way, both the anatomy and physiology of the experimentally cDNA supported human, mouse and nematode genes are thoroughly annotated. Our goals are to offer an up-to-date resource on the genes, in the hope to stimulate further experiments at the bench, or to help medical research. AceView can be queried by meaningful words or groups of words as well as by most standard identifiers, such as gene names, Entrez Gene ID, UniGene ID, GenBank accessions.

  • From Current Category

Cite this (AdapterRemoval, RRID:SCR_011834)

URL: https://github.com/MikkelSchubert/adapterremoval

Resource Type: Resource, software resource, data processing software, data analysis software, sequence analysis software, software application

Software program to remove residual adapter sequences from next generation sequencing reads.

  • From Current Category

    AFTOL

Cite this (AFTOL, RRID:SCR_004650)

URL: http://www.aftol.org/

Resource Type: Resource, data repository, biospecimen repository, data set, service resource, storage service resource, data or information resource, material storage repository

To enhance the understanding of the evolution of the Kingdom Fungi, 1500+ species were sampled for eight gene loci across all major fungal clades, plus a subset of taxa for a suite of morphological and ultrastructural characters with resulting data: AFTOL Molecular Database (generated by WASABI - Web Accessible Sequence Analysis for Biological Inference), Blast search the AFTOL Database (generated by WASABI), AFTOL primers (generated by WASABI), AFTOL primers by species (generated by WASABI), AFTOL alignments, and the AFTOL Structural and Biochemical Database. Users may submit samples to the AFTOL project. AFTOL is a collaboration centered around four universities in the United States: Duke University (Francois Lutzoni and Rytas Vilgalys), Clark University (David Hibbett), Oregon State University (Joey Spatafora), and University of Minnesota (David McLaughlin). Participants throughout the world have donated vouchers, taxon samples, and gene sequences. The aim of the project is to reconstruct the fungal tree of life using all available data for eight loci (nuclear ribosomal DNA: LSU, SSU, ITS (including 5.8s, ITS1 and ITS2); RNA polymerase II: RPB1, RPB2; elongation factor 1-alpha; mitochondrial SSU rDNA, and mitochondrial ATP synthase protein subunit 6). A further objective of this study is to summarize and integrate current knowledge regarding fungal subcellular features within this new phylogenetic framework. The name of the bioinformatic package developed for AFTOL is WASABI which provides an efficient communication platform to facilitate the collection and dissemination of molecular data to (and from) the laboratories and participants. All molecular data can be viewed, downloaded, verified, and corrected by the participants of AFTOL. A central goal of the WASABI interface is to establish an automated analysis framework that includes basecalling of newly generated chromatograms, contig assembly, quality verification of sequences (including a local BLAST), sequence alignment, and congruence test. Gene sequences that pass all tests and are finally verified by their authors will undergo automated phylogenetic analysis on a regular schedule. Although all steps are initially carried out noninteractively, the users can verify and correct the results at any step and thus initiate the reanalysis of dependent data.

  • From Current Category

    Albacore

Cite this (Albacore, RRID:SCR_015897)

URL: https://github.com/dvera/albacore

Resource Type: Resource, software resource, software application, data processing software

Data processing basecaller for the Oxford Nanopore sequencer that identifies DNA sequences directly from raw data. It enhances accuracy of the single-read sequence data, contributing to high consensus accuracy for nanopore sequence data.

  • From Current Category

Cite this (Alizadehlab: MeeboChip and HeeboChip Open Source Project, RRID:SCR_008384)

URL: http://alizadehlab.stanford.edu/

Resource Type: Resource, data or information resource, database

This is an open-source Mouse Exonic Evidence-Based Oligonucleotide Chip (MEEBOChip), and are in the process of building the human counterpart, HEEBOChip. The set of 70mers for MEEBOChip is already available from Illumina, Inc., with synthesis of HEEBOChip 70mers in progress. Both arrays are based on a novel selection of exonic long-oligonucleotides (70-mers) from a genomic annotation of the corresponding complete genome sequences, using a transcriptome-based annotation of exon structure for each genomic locus. Using a combination of existing and custom-tailored tools and datasets (including millions of mRNA and EST sequences), we built and performed a systematic examination of transcript-supported exon structure for each genomic locus at the base-pair level (i.e., exonic evidence). This strategy allowed them to select both constitutive and in many cases alternative exons for nearly every gene in the corresponding genome (e.g., protocadherin locus), allowing an unprecedented exploration of human and mouse biology. Furthermore, they used experimentally derived data to hone the selection of these 70mers, helping maximize their performance under typical fluorescent labeling and hybridization conditions. Specifically, they applied and refined the ArrayOligoSelector algorithm from Joe DeRisis laboratory to select 70mers, considering not only their uniqueness (i.e., hybridization specificity) within the content of the entire genome, but also to overcome the known biases of labeling and hybridization methods (e.g., 3-biased reverse transcription and in vitro transcription reactions).

  • From Current Category

Cite this (Alternate splicing gallery, RRID:SCR_008129)

URL: http://statgen.ncsu.edu/asg/

Resource Type: Resource, data or information resource, database

Alternative splicing essentially increases the diversity of the transcriptome and has important implications for physiology, development and the genesis of diseases. This resource uses a different approach to investigate alternative splicing (instead of the conventional case-by case fashion) and integrates all transcripts derived from a gene into a single splicing graph. ASG is a database of splicing graphs for human genes, using transcript information from various major sources (Ensembl, RefSeq, STACK, TIGR and UniGene). Each transcript corresponds to a path in the graph, and alternative splicing is displayed by bifurcations. This representation preserves the relationships between different splicing variants and allows us to investigate systematically all possible putative transcripts. Web interface allows users to display the splicing graphs, to interactively assemble transcripts and to access their sequences as well as neighboring genomic regions. ASG also provide for each gene, an exhaustive pre-computed catalog of putative transcriptsin total more than 1.2 million sequences. It has found that ~65 of the investigated genes show evidence for alternative splicing, and in 5 of the cases, a single gene might produce over 100 transcripts.

  • From Current Category

Cite this (Alternative Exon Database, RRID:SCR_008157)

URL: http://www.ebi.ac.uk/asd/aedb/index.html

Resource Type: Resource, data or information resource, database

THIS RESOURCE IS NO LONGER IN SERVICE, documented on March 27, 2013. A manual generated database for alternative exons and their properties from numerous species - the data is gathered from literature where these exons have been experimentally verified. Most alternative exons are cassette exons and are expressed in more than two tissues. Of all exons whose expression was reported to be specific for a certain tissue, the majority were expressed in the brain. At the moment, AEdb products that are available are sequence (a database of alternative exons), function (a database of functions attributed to constitutive and alternative exon), regulatory sequence (a database of transcript regulatory motifs), minigenes (a table of minigenes and their associations to splicing events), and diseases (a table of diseases associated with splicing and their associations to AltSplice). Alternative splicing is an important regulatory mechanism of mammalian gene expression. The alternative splicing database (ASD) consortium is systematically collecting and annotating data on alternative splicing. The continuation and upgrade of the ASD consists of computationally and manually generated data. Its largest parts are AltSplice, a value-added database of computationally delineated alternative splicing events. Its data include alternatively spliced introns/exons, events, isoform splicing patterns and isoform peptide sequences. AltSplice data are generated by examining gene-transcript alignments. The data are annotated for various biological features including splicing signals, expression states, (SNP)-mediated splicing and cross-species conservation. AEdb forms the manually curated component of ASD. It is a literature-based data set containing sequence and properties of alternatively spliced exons, functional enumeration of observed splicing events, characterization of observed splicing regulatory elements, and a collection of experimentally clarified minigene constructs.

  • From Current Category

Cite this (AmphoraNet, RRID:SCR_005009)

URL: http://amphoranet.pitgroup.org/

Resource Type: Resource, analysis service resource, data analysis service, service resource, production service resource

Webserver implementation of the AMPHORA2 workflow for phylogenetic analysis of metagenomic shotgun sequencing data. It is capable of assigning a probability-weighted taxonomic group for each phylogenetic marker gene found in the input metagenomic sample.

  • From Current Category

Cite this (Ancient conserved untranslated sequences, RRID:SCR_008130)

URL: http://pbil.univ-lyon1.fr/acuts/ACUTS.html

Resource Type: Resource, data or information resource, database

THIS RESOURCE IS NO LONGER IN SERVICE, Documented on August 12, 2014. Database that identifies new regulatory elements in untranslated regions of protein-coding genes (5 prime flanks, 5 prime UTRs, introns, 3 prime UTRs and 3 prime flanks). The analyses is focused on genes from metazoan species (essentially vertebrates, insects and nematodes). Information on highly conserved regions (sequences, alignments, annotations, bibliographic references) are compiled. Currently 176 out of 326 detected highly conserved regions (HCRs) have been analyzed and incorporated in the database. You can also access the list of annotated conserved elements and the list of conserved elements that remain to be processed. Their approach is based on comparative sequence analysis, for the identification of phylogenetic footprints.

  • From Current Category

Cite this (Animal Genome Database, RRID:SCR_008165)

URL: http://animal.dna.affrc.go.jp/agp/index.html

Resource Type: Resource, data or information resource, database

Database of comparative gene mapping between species to assist the mapping of the genes related to phenotypic traits in livestock. The linkage maps, cytogenetic maps, polymerase chain reaction primers of pig, cattle, mouse and human, and their references have been included in the database, and the correspondence among species have been stipulated in the database. AGP is an animal genome database developed on a Unix workstation and maintained by a relational database management system. It is a joint project of National Institute of Agrobiological Sciences (NIAS) and Institute of the Society for Techno-innovation of Agriculture, Forestry and Fisheries (STAFF-Institute), under cooperation with other related research institutes. AGP also contains the Pig Expression Data Explorer (PEDE), a database of porcine EST collections derived from full-length cDNA libraries and full-length sequences of the cDNA clones picked from the EST collection. The EST sequences have been clustered and assembled, and their similarity to sequences in RefSeq, and UniGene determined. The PEDE database system was constructed to store sequences and similarity data of swine full-length cDNA libraries and to make them available to users. It provides interfaces for keyword and ID searches of BLAST results and enables users to obtain sequence data and names of clones of interest. Putative SNPs in EST assemblies have been classified according to breed specificity and their effect on coding amino acids, and the assemblies are equipped with an SNP search interface. The database contains porcine nucleotide sequences and cDNA clones that are ready for analyses such as expression in mammalian cells, because of their high likelihood of containing full-length CDS. PEDE will be useful for researchers who want to explore genes that may be responsible for traits such as disease susceptibility. The database also offers information regarding major and minor porcine-specific antigens, which might be investigated in regard to the use of pigs as models in various medical research applications.

  • From Current Category

Cite this (Anopheles gambiae (African malaria mosquito) genome view, RRID:SCR_004402)

URL: http://www.ncbi.nlm.nih.gov/mapview/map_search.cgi?taxid=7165

Resource Type: Resource, data or information resource, database

A database for the Anopheles gambiae str. PEST genome that was sequenced using a whole genome shotgun approach. The database aims to contribute to the understanding of mosquito genome structure and organization and will assist the development of malaria control strategies and improved anti-malarial drugs and vaccines. Sequences were generated and assembled into contigs for submission to GenBank.

  • From Current Category

Cite this (Arabidopsis thaliana Map, RRID:SCR_013106)

URL: http://www.athamap.de/

Resource Type: Resource, data or information resource, database

:AthaMap provides a genome-wide map of potential transcription factor binding sites (TFBS) in Arabidopsis thaliana. AthaMap also displays target sites of small RNAs. Data in AthaMap is based on published transcription factor (TF) binding specificities available as alignment matrices or experimentally determined single binding sites. Matrix- and pattern-based screenings were performed to identify potential transcription factor binding sites in the genome of Arabidopsis thaliana (TAIR release 7). The complete list of the 109 transcription factors included in AthaMap and the corresponding references and screening results are displayed. By using the search function, the sequence of a specific genomic position or gene can be displayed in a sequence window including the potential transcription factor binding sites. A co-localization function allows the search for user-defined potential combinatorial elements. A set of pre-calculated known combinatorial elements is already incorporated in AthaMap. The Gene Analysis tool enables identification of common transcription factor binding sites in a set of user-submitted genes. :Sponsors: This work was supported by the German Federal Ministry for Education and Research through GABI-ADVANCIS (BMBF 0315037B, 031U110C/031U210C :), the Technical University of Braunschweig, the Forschungsschwerpunkt Agrarbiotechnologie des Landes Niedersachsen (VW-Vorab)

  • From Current Category

Cite this (ArkDB - Genomes For The Rest of Us, RRID:SCR_001838)

URL: http://www.thearkdb.org/

Resource Type: Resource, data or information resource, database

The ArkDB database system aims to provide a comprehensive public repository for genome mapping data from farmed and other animal Species. The system also aims to provide a route in to genomic and other sequence from the initial viewpoint of linkage mapping, RH mapping, physical mapping or - possibly more importantly - QTL mapping data. Sponsors: ArkDB is funded by Biotechnology and Biological Sciences Research Council (BBSRC), UK. Cat, Chicken, Cow, Deer, Duck, Horse, Pig, Quail, Salmon, Sea Bass, Sheep, Turkey, QLT map, Linkage map, RH map, Farm animal, Genome map, Sequence, Mapping

  • From Current Category

Cite this (ASAP: the Alternative Splicing Annotation Project, RRID:SCR_003415)

URL: http://bioinfo.mbi.ucla.edu/ASAP/

Resource Type: Resource, data or information resource, database

THIS RESOURCE IS NO LONGER IN SERVICE, documented on 8/12/13. Database to access and mine alternative splicing information coming from genomics and proteomics based on genome-wide analyses of alternative splicing in human (30 793 alternative splice relationships found) from detailed alignment of expressed sequences onto the genomic sequence. ASAP provides precise gene exon-intron structure, alternative splicing, tissue specificity of alternative splice forms, and protein isoform sequences resulting from alternative splicing. They developed an automated method for discovering human tissue-specific regulation of alternative splicing through a genome-wide analysis of expressed sequence tags (ESTs), which involves classifying human EST libraries according to tissue categories and Bayesian statistical analysis. They use the UniGene clusters of human Expressed Sequence Tags (ESTs) to identify splices. The UniGene EST's are clustered so that a single cluster roughly corresponds to a gene (or at least a part of a gene). A single EST represents a portion of a processed (already spliced) mRNA. A given cluster contains many ESTs, each representing an outcome of a series of splicing events. The ESTs in UniGene contain the different mRNA isoforms transcribed from an alternatively spliced gene. They are not predicting alternative splicing, but locating it based on EST analysis. The discovered splices are further analyzed to determine alternative splicing events. They have identified 6201 alternative splice relationships in human genes, through a genome-wide analysis of expressed sequence tags (ESTs). Starting with 2.1 million human mRNA and EST sequences, they mapped expressed sequences onto the draft human genome sequence and only accepted splices that obeyed the standard splice site consensus. After constructing a tissue list of 46 human tissues with 2 million human ESTs, they generated a database of novel human alternative splices that is four times larger than our previous report, and used Bayesian statistics to compare the relative abundance of every pair of alternative splices in these tissues. Using several statistical criteria for tissue specificity, they have identified 667 tissue-specific alternative splicing relationships and analyzed their distribution in human tissues. They have validated our results by comparison with independent studies. This genome-wide analysis of tissue specificity of alternative splicing will provide a useful resource to study the tissue-specific functions of transcripts and the association of tissue-specific variants with human diseases.

  • From Current Category

  1. Resource Identification Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X