Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Search

Type in a keyword to search

on page 1 showing 7 out of 7 results

Cite this (BioExtract, RRID:SCR_005397)

URL: http://www.bioextract.org/GuestLogin

Resource Type: Resource, service resource

An open, web-based system designed to aid researchers in the analysis of genomic data by providing a platform for the creation of bioinformatic workflows. Scientific workflows are created within the system by recording tasks performed by the user. These tasks may include querying multiple, distributed data sources, saving query results as searchable data extracts, and executing local and web-accessible analytic tools. The series of recorded tasks can then be saved as a reproducible, sharable workflow available for subsequent execution with the original or modified inputs and parameter settings. Integrated data resources include interfaces to the National Center for Biotechnology Information (NCBI) nucleotide and protein databases, the European Molecular Biology Laboratory (EMBL-Bank) non-redundant nucleotide database, the Universal Protein Resource (UniProt), and the UniProt Reference Clusters (UniRef) database. The system offers access to numerous preinstalled, curated analytic tools and also provides researchers with the option of selecting computational tools from a large list of web services including the European Molecular Biology Open Software Suite (EMBOSS), BioMoby, and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The system further allows users to integrate local command line tools residing on their own computers through a client-side Java applet.

  • From Current Category

    DAVID

Cite this (DAVID, RRID:SCR_001881)

URL: http://david.abcc.ncifcrf.gov/

Resource Type: Resource, data analysis service, data access protocol, database, web service, production service resource, analysis service resource, service resource, software resource, data or information resource

An integrated biological knowledgebase and comprehensive set of functional annotation tools for investigators to understand biological meaning behind large lists of genes. For any given gene list, DAVID tools are able to: - Identify enriched biological themes, particularly GO terms - Discover enriched functional-related gene groups - Cluster redundant annotation terms - Visualize genes on BioCarta & KEGG pathway maps - Display related many-genes-to-many-terms on 2-D view. - Search for other functionally related genes not in the list - List interacting proteins - Explore gene names in batch - Link gene-disease associations - Highlight protein functional domains and motifs - Redirect to related literatures - Convert gene identifiers from one type to another.

  • From Current Category

    FlyMine

Cite this (FlyMine, RRID:SCR_002694)

URL: http://www.flymine.org/

Resource Type: Resource, data analysis service, data access protocol, production service resource, analysis service resource, database, web service, service resource, software resource, data or information resource

An integrated database of genomic, expression and protein data for Drosophila, Anopheles, C. elegans and other organisms. You can run flexible queries, export results and analyze lists of data. FlyMine presents data in categories, with each providing information on a particular type of data (for example Gene Expression or Protein Interactions). Template queries, as well as the QueryBuilder itself, allow you to perform searches that span data from more than one category. Advanced users can use a flexible query interface to construct their own data mining queries across the multiple integrated data sources, to modify existing template queries or to create your own template queries. Access our FlyMine data via our Application Programming Interface (API). We provide client libraries in the following languages: Perl, Python, Ruby and & Java API

  • From Current Category

Cite this (FunNet - Transcriptional Networks Analysis, RRID:SCR_006968)

URL: http://www.funnet.info/

Resource Type: Resource, data analysis service, data processing software, production service resource, analysis service resource, software application, service resource, software resource

Functional Analysis of Transcriptional Networks (FunNet) is designed as an integrative tool for analyzing gene co-expression networks built from microarray expression data. The analytical model implemented in this tool involves two abstraction layers: transcriptional (i.e. gene expression profiles) and functional (i.e. biological themes indicating the roles of the analyzed transcripts). A functional analysis technique, which relies on Gene Ontology and KEGG annotations, is applied to extract a list of relevant biological themes from microarray gene expression data. Afterwards multiple-instance representations are built to relate relevant biological themes to their annotated transcripts. An original non-linear dynamical model is used to quantify the contextual proximity of relevant genomic themes based on their patterns of propagation in the gene co-expression network (i.e. capturing the similarity of the expression profiles of the transcriptional instances of annotating themes). In the end an unsupervised multiple-instance spectral clustering procedure is used to explore the modular architecture of the co-expression network by grouping together biological themes demonstrating a significant relationship in the co-expression network. Functional and transcriptional representations of the co-expression network are provided, together with detailed information on the contextual centrality of related transcripts and genomic themes. FunNet is provided both as a web-based tool and as a standalone R package. The standalone R implementation can be run on any operating system for which an R environment implementation is available (Windows, Mac OS, various flavors of Linux and Unix) and can be downloaded from the FunNet website, or from the worldwide mirrors of CRAN. Both implementations of the FunNet tool are provided freely under the GNU General Public License 2.0. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

  • From Current Category

    LegumeIP

Cite this (LegumeIP, RRID:SCR_008906)

URL: http://plantgrn.noble.org/LegumeIP/

Resource Type: Resource, data analysis service, production service resource, analysis service resource, database, service resource, data or information resource

LegumeIP is an integrative database and bioinformatics platform for comparative genomics and transcriptomics to facilitate the study of gene function and genome evolution in legumes, and ultimately to generate molecular based breeding tools to improve quality of crop legumes. LegumeIP currently hosts large-scale genomics and transcriptomics data, including: * Genomic sequences of three model legumes, i.e. Medicago truncatula, Glycine max (soybean) and Lotus japonicus, including two reference plant species, Arabidopsis thaliana and Poplar trichocarpa, with the annotation based on UniProt TrEMBL, InterProScan, Gene Ontology and KEGG databases. LegumeIP covers a total 222,217 protein-coding gene sequences. * Large-scale gene expression data compiled from 104 array hybridizations from L. japonicas, 156 array hybridizations from M. truncatula gene atlas database, and 14 RNA-Seq-based gene expression profiles from G. max on different tissues including four common tissues: Nodule, Flower, Root and Leaf. * Systematic synteny analysis among M. truncatula, G. max, L. japonicus and A. thaliana. * Reconstruction of gene family and gene family-wide phylogenetic analysis across the five hosted species. LegumeIP features comprehensive search and visualization tools to enable the flexible query on gene annotation, gene family, synteny, relative abundance of gene expression.

  • From Current Category

    PRODORIC

Cite this (PRODORIC, RRID:SCR_007074)

URL: http://prodoric.tu-bs.de/

Resource Type: Resource, data or information resource, database

Database about gene regulation and gene expression in prokaryotes. It includes a manually curated and unique collection of transcription factor binding sites. A variety of bioinformatics tools for the prediction, analysis and visualization of regulons and gene reglulatory networks is included. The integrated approach provides information about molecular networks in prokaryotes with focus on pathogenic organisms. In detail this concerns: * transcriptional regulation (transcription factors and their DNA binding sites * signal transduction (two-component systems, phosphylation cascades) * protein interactions (complex formation, oligomerization) * biochemical pathways (chemical reactions) * other regulation events (e.g. codon usage, etc. ...) It aims to be a resource to model protein-host interactions and to be a suitable platform to analyze high-throughput data from proteomis and transcriptomics experiments (systems biology). Currently it mainly contains detailed information about operon and promoter structures including huge collections of transcription factor binding sites. If an appropriate number of regulatory binding sites is available, a position weight matrix (PWM) and a sequence logo is provided, which can be used to predict new binding sites. This data is collected manually by screening the original scientific literature. PRODORIC also handles protein-protein interactions and signal-transduction cascades that commonly occur in form of two-component systems in prokaryotes. Furthermore it contains metabolic network data imported from the KEGG database.

  • From Current Category

    ProOpDB

Cite this (ProOpDB, RRID:SCR_006111)

URL: http://operons.ibt.unam.mx/OperonPredictor/

Resource Type: Resource, data or information resource, database

The Prokaryotic Operon DataBase (ProOpDB) constitutes one of the most precise and complete repository of operon predictions in our days. Using our novel and highly accurate operon algorithm, we have predicted the operon structures of more than 1,200 prokaryotic genomes. ProOpDB offers diverse alternatives by which a set of operon predictions can be retrieved including: i) organism name, ii) metabolic pathways, as defined by the KEGG database, iii) gene orthology, as defined by the COG database, iv) conserved protein motifs, as defined by the Pfam database, v) reference gene, vi) reference operon, among others. In order to limit the operon output to non-redundant organisms, ProOpDB offers an efficient protocol to select the more representative organisms based on a precompiled phylogenetic distances matrix. In addition, the ProOpDB operon predictions are used directly as the input data of our Gene Context Tool (GeConT) to visualize their genomic context and retrieve the sequence of their corresponding 5?? regulatory regions, as well as the nucleotide or amino acid sequences of their genes. The prediction algorithm The algorithm is a multilayer perceptron neural network (MLP) classifier, that used as input the intergenic distances of contiguous genes and the functional relationship scores of the STRING database between the different groups of orthologous proteins, as defined in the COG database. Nevertheless, the operon prediction of our method is not restricted to only those genes with a COG assignation, since we successfully defined new groups of orthologous genes and obtained, by extrapolation, a set of equivalent STRING-like scores based on conserved gene pairs on different genomes. Since the STRING functional relationships scores are determined in an un-bias manner and efficiently integrates a large amount of information coming from different sources and kind of evidences, the prediction made by our MLP are considerably less influenced by the bias imposed in the training procedure using one specific organism.

  • From Current Category

  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X