Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Search

Type in a keyword to search

on page 1 showing 20 out of 894 results

Cite this (1000 Genomes: A Deep Catalog of Human Genetic Variation, RRID:SCR_006828)

URL: http://www.1000genomes.org/

Resource Type: Resource, organization portal, database, consortium, data set, portal, data or information resource

International collaboration producing an extensive public catalog of human genetic variation, including SNPs and structural variants, and their haplotype contexts, in an effort to provide a foundation for investigating the relationship between genotype and phenotype. The genomes of about 2500 unidentified people from about 25 populations around the world were sequenced using next-generation sequencing technologies. Redundant sequencing on various platforms and by different groups of scientists of the same samples can be compared. The results of the study are freely and publicly accessible to researchers worldwide. The consortium identified the following populations whose DNA will be sequenced: Yoruba in Ibadan, Nigeria; Japanese in Tokyo; Chinese in Beijing; Utah residents with ancestry from northern and western Europe; Luhya in Webuye, Kenya; Maasai in Kinyawa, Kenya; Toscani in Italy; Gujarati Indians in Houston; Chinese in metropolitan Denver; people of Mexican ancestry in Los Angeles; and people of African ancestry in the southwestern United States. The goal Project is to find most genetic variants that have frequencies of at least 1% in the populations studied. Sequencing is still too expensive to deeply sequence the many samples being studied for this project. However, any particular region of the genome generally contains a limited number of haplotypes. Data can be combined across many samples to allow efficient detection of most of the variants in a region. The Project currently plans to sequence each sample to about 4X coverage; at this depth sequencing cannot provide the complete genotype of each sample, but should allow the detection of most variants with frequencies as low as 1%. Combining the data from 2500 samples should allow highly accurate estimation (imputation) of the variants and genotypes for each sample that were not seen directly by the light sequencing. All samples from the 1000 genomes are available as lymphoblastoid cell lines (LCLs) and LCL derived DNA from the Coriell Cell Repository as part of the NHGRI Catalog. The sequence and alignment data generated by the 1000genomes project is made available as quickly as possible via their mirrored ftp sites. ftp://ftp.1000genomes.ebi.ac.uk ftp://ftp-trace.ncbi.nlm.nih.gov/1000genomes

  • From Current Category

Cite this (1000 Genomes Project and AWS, RRID:SCR_008801)

URL: http://aws.amazon.com/1000genomes/

Resource Type: Resource, data set, data or information resource

A dataset containing the full genomic sequence of 1,700 individuals, freely available for research use. The 1000 Genomes Project is an international research effort coordinated by a consortium of 75 companies and organizations to establish the most detailed catalogue of human genetic variation. The project has grown to 200 terabytes of genomic data including DNA sequenced from more than 1,700 individuals that researchers can now access on AWS for use in disease research free of charge. The dataset containing the full genomic sequence of 1,700 individuals is now available to all via Amazon S3. The data can be found at: http://s3.amazonaws.com/1000genomes The 1000 Genomes Project aims to include the genomes of more than 2,662 individuals from 26 populations around the world, and the NIH will continue to add the remaining genome samples to the data collection this year. Public Data Sets on AWS provide a centralized repository of public data hosted on Amazon Simple Storage Service (Amazon S3). The data can be seamlessly accessed from AWS services such Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Elastic MapReduce (Amazon EMR), which provide organizations with the highly scalable compute resources needed to take advantage of these large data collections. AWS is storing the public data sets at no charge to the community. Researchers pay only for the additional AWS resources they need for further processing or analysis of the data. All 200 TB of the latest 1000 Genomes Project data is available in a publicly available Amazon S3 bucket. You can access the data via simple HTTP requests, or take advantage of the AWS SDKs in languages such as Ruby, Java, Python, .NET and PHP. Researchers can use the Amazon EC2 utility computing service to dive into this data without the usual capital investment required to work with data at this scale. AWS also provides a number of orchestration and automation services to help teams make their research available to others to remix and reuse. Making the data available via a bucket in Amazon S3 also means that customers can crunch the information using Hadoop via Amazon Elastic MapReduce, and take advantage of the growing collection of tools for running bioinformatics job flows, such as CloudBurst and Crossbow.

  • From Current Category

Cite this (3D de novo assembly, RRID:SCR_017227)

URL: https://github.com/theaidenlab/3d-dna.git

Resource Type: Resource, software resource, software application, data analysis software, data processing software

Software tool as 3D de novo assembly (3D DNA) pipeline. Used to help generate HI-C assembly.

  • From Current Category

Cite this (4D Nucleome , RRID:SCR_016925)

URL: https://www.4dnucleome.org

Resource Type: Resource, project portal, portal, data or information resource

Research project to understand the principles underlying nuclear organization in space and time, the role nuclear organization plays in gene expression and cellular function, and how changes in nuclear organization affect normal development and diseases. Portal provides free access to datasets, software packages, and protocols to advance biomedical research of nuclear architecture. Aims to develop and apply approaches to map the structure and dynamics of the human and mouse genomes.

  • From Current Category

Cite this (959 Nematode Genomes, RRID:SCR_006068)

URL: http://www.nematodes.org/nematodegenomes/index.php/Main_Page

Resource Type: Resource, wiki, narrative resource, data or information resource

A collaborative wiki that collates information on completed, ongoing and planned genome and transcriptome sequencing projects on species from phylum Nematoda. The intention is to encourage genome sequencing across the diversity of the phylum Nematoda. Wiki includes: * Published complete nematode genomes: A dynamically generated table of all species for which the genome is published. * Nematode species with genomes in progress: A dynamically generated table of all species for which a genome project is underway. Users may add species to the list * Proposed nematode genome projects: To propose a species for genome sequencing, edit its species page, and set the genome project status to proposed. * BLAST server: Search a number of the nematode-genomes-in-progress with genes of your choice. Currently there are 12 draft genomes available... * Genomes with Data available: Genomes with data available for download. Users may add more data URLs to strain pages or update the URLs.

  • From Current Category

Cite this (ABS: A Database of Annotated Regulatory Binding Sites From Orthologous Promoters, RRID:SCR_002276)

URL: http://genome.imim.es/datasets/abs2005/index.html

Resource Type: Resource, data or information resource, database

Public database of known binding sites identified in promoters of orthologous vertebrate genes that have been manually curated from bibliography. We have annotated 650 experimental binding sites from 68 transcription factors and 100 orthologous target genes in human, mouse, rat or chicken genome sequences. Computational predictions and promoter alignment information are also provided for each entry. For each gene, TFBSs conserved in orthologous sequences from at least two different species must be available. Promoter sequences as well as the original GenBank or RefSeq entries are additionally supplied in case of future identification conflicts. The final TSS annotation has been refined using the database dbTSS. Up to this release, 500 bps upstream the annotated transcription start site (TSS) according to REFSEQ annotations have been always extracted to form the collection of promoter sequences from human, mouse, rat and chicken. For each regulatory site, the position, the motif and the sequence in which the site is present are available in a simple format. Cross-references to EntrezGene, PubMed and RefSeq are also provided for each annotation. Apart from the experimental promoter annotations, predictions by popular collections of weight matrices are also provided for each promoter sequence. In addition, global and local alignments and graphical dotplots are also available.

  • From Current Category

    AceView

Cite this (AceView, RRID:SCR_002277)

URL: http://www.ncbi.nlm.nih.gov/ieb/research/acembly/

Resource Type: Resource, data or information resource, database

THIS RESOURCE IS NO LONGER SUPPORTED, documented August 29, 2016. AceView offers an integrated view of the human, nematode and Arabidopsis genes reconstructed by co-alignment of all publicly available mRNAs and ESTs on the genome sequence. Our goals are to offer a reliable up-to-date resource on the genes and their functions and to stimulate further validating experiments at the bench. AceView provides a curated, comprehensive and non-redundant sequence representation of all public mRNA sequences (mRNAs from GenBank or RefSeq, and single pass cDNA sequences from dbEST and Trace). These experimental cDNA sequences are first co-aligned on the genome then clustered into a minimal number of alternative transcript variants and grouped into genes. Using exhaustively and with high quality standards the available cDNA sequences evidences the beauty and complexity of mammals' transcriptome, and the relative simplicity of the nematode and plant transcriptomes. Genes are classified according to their inferred coding potential; many presumably non-coding genes are discovered. Genes are named by Entrez Gene names when available, else by AceView gene names, stable from release to release. Alternative features (promoters, introns and exons, polyadenylation signals) and coding potential, including motifs, domains, and homologies are annotated in depth; tissues where expression has been observed are listed in order of representation; diseases, phenotypes, pathways, functions, localization or interactions are annotated by mining selected sources, in particular PubMed, GAD and Entrez Gene, and also by performing manual annotation, especially in the worm. In this way, both the anatomy and physiology of the experimentally cDNA supported human, mouse and nematode genes are thoroughly annotated. Our goals are to offer an up-to-date resource on the genes, in the hope to stimulate further experiments at the bench, or to help medical research. AceView can be queried by meaningful words or groups of words as well as by most standard identifiers, such as gene names, Entrez Gene ID, UniGene ID, GenBank accessions.

  • From Current Category

Cite this (ACT: Artemis Comparison Tool, RRID:SCR_004507)

URL: http://www.sanger.ac.uk/resources/software/act/

Resource Type: Resource, software resource

A free tool for displaying pairwise comparisons between two or more DNA sequences. It can be used to identify and analyze regions of similarity and difference between genomes and to explore conservation of synteny, in the context of the entire sequences and their annotation. It is based on the software for Artemis, the genome viewer and annotation tool. ACT runs on UNIX, GNU/Linux, Macintosh and MS Windows systems. It can read complete EMBL and GENBANK entries or sequences in FASTA or raw format. Other sequence features can be in EMBL, GENBANK or GFF format.

  • From Current Category

Cite this (ADMIXTURE, RRID:SCR_001263)

URL: http://www.genetics.ucla.edu/software/admixture/

Resource Type: Resource, software resource

A software tool for maximum likelihood estimation of individual ancestries from multilocus SNP genotype datasets. It uses the same statistical model as STRUCTURE but calculates estimates much more rapidly using a fast numerical optimization algorithm. It uses a block relaxation approach to alternately update allele frequency and ancestry fraction parameters. Each block update is handled by solving a large number of independent convex optimization problems, which are tackled using a fast sequential quadratic programming algorithm. Convergence of the algorithm is accelerated using a novel quasi-Newton acceleration method.

  • From Current Category

    Aegean

Cite this (Aegean, RRID:SCR_015965)

URL: http://standage.github.io/AEGeAn

Resource Type: Resource, data analysis software, data processing software, software application, sequence analysis software, software resource, software toolkit

Software toolkit for the analysis and evaluation of genome annotations. The toolkit includes a variety of analysis programs, e.g. for comparing distinct sets of gene structure annotations (ParsEval), computation of gene loci (LocusPocus) and more.

  • From Current Category

Cite this (AgedBrainSYSBIO, RRID:SCR_003825)

URL: http://www.agedbrainsysbio.eu/

Resource Type: Resource, organization portal, portal, consortium, data or information resource

Consortium focused on identifying the foundational pathways responsible for the aging of the brain, with a focus on Late Onset Alzheimer's disease. They aim to identify the interactions through which the aging phenotype develops in normal and in disease conditions; modeling novel pathways and their evolutionary properties to design experiments that identify druggable targets. As early steps of neurodegenerative disorders are expected to impact synapse function the project will focus in particular on pre- or postsynaptic protein networks. The concept is to identify subsets of pathways with two unique druggable hallmarks, the validation of interactions occurring locally in subregions of neurons and a human and/or primate accelerated evolutionary signature. The consortium will do this through six approaches: * identification of interacting protein networks from recent Late-Onset Alzheimer Disease-Genome Wide Association Studies (LOAD-GWAS) data, * experimental validation of interconnected networks working in subregion of a neuron (such as dendrites and dendritic spines), * inclusion of these experimentally validated networks in larger networks obtained from available databases to extend possible protein interactions, * identification of human and/or primate positive selection either in coding or in regulatory gene sequences, * manipulation of these human and/or primate accelerated evolutionary interacting proteins in human neurons derived from induced Pluripotent Stem Cells (iPSCs) * modeling predictions in drosophila and novel mouse transgenic models * validation of new druggable targets and markers as a proof-of-concept towards the prevention and cure of aging cognitive defects. The scientists will share results and know-how on Late-Onset Alzheimer Disease-Genome Wide Association Studies (LOAD-GWAS) gene discovery, comparative functional genomics in mouse and drosophila models, in mouse transgenic approaches, research on human induced pluripotent stem cells (hiPSC) and their differentiation in vitro and modeling pathways with emphasis on comparative and evolutionary aspects. The four European small to medium size enterprises (SMEs) involved will bring their complementary expertise and will ensure translation of project results to clinical application.

  • From Current Category

    AGE

Cite this (AGE, RRID:SCR_005253)

URL: http://sv.gersteinlab.org/age/

Resource Type: Resource, software resource

A tool that implements an algorithm for optimal alignment of sequences with Structural Variations (SVs).

  • From Current Category

    AgingDB

Cite this (AgingDB, RRID:SCR_010226)

URL: http://link.springer.com/article/10.1007%2Fs11357-003-0002-y

Resource Type: Resource, service resource, data or information resource, data repository, storage service resource, database

A database that stores information on the biomolecules which are modulated during aging and by caloric restriction (CR). To enhance its usefulness, data collected from studies of CR''''s anti-oxidative action on gene expression, oxidative stress, and many chronic age-related diseases are included. AgingDB is organized into two sections A) apoptosis and the various mitochondrial biomolecules that play a role in aging; B) nuclear transcription factors known to be_sensitive to oxidative environment. AgingDB features an imagemap of biomolecular signal pathways and visualized information that includes protein-protein interactions of biomolecules. Authorized users can submit a new biomolecule or edit an existing biomolecule to reflect latest developments.

  • From Current Category

    AGI

Cite this (AGI, RRID:SCR_007203)

URL: http://www.genome.arizona.edu/

Resource Type: Resource, disease-related portal, topical portal, data or information resource, portal, research forum portal

Their primary focus is in the area of structural, evolutionary and functional genomics of crop plants. AGI is divided into 5 Centers each lead by a Center Leader and a senior Manager (BAC Library Construction Center, BAC/EST Resource Center, Sequencing & Physical Mapping Center (including: production sequencing and fingerprinting, and sequence finishing), Bioinformatics Center and the Evolutionary and Functional Genomics Center). AGI is housed in the state of the art Thomas W. Keating Bioresearch Building on the northeast part of campus near the Medical School. AGI currently employees about 30 scientists and is primarily funded through federal grants, private contracts, and the Bud Antle Endowed Chair in Plant Molecular Genetics. Sponsors: AGI is supported by Bio5, Plant Sciences, National Science Foundation, National Institues oh Health, and USDA.

  • From Current Category

    AGORA

Cite this (AGORA, RRID:SCR_005070)

URL: http://www.biomedcentral.com/1471-2105/13/189

Resource Type: Resource, software resource

An algorithm to use optical map information directly within the de Bruijn graph framework to help produce an accurate assembly of a genome that is consistent with the optical map information provided. AGORA takes as input two data structures: OpMap ? an ordered list of fragment sizes representing the optical map; and Edges ? a list of de Bruijn graph edges with their corresponding sequences.

  • From Current Category

    ALFRED

Cite this (ALFRED, RRID:SCR_001730)

URL: http://alfred.med.yale.edu

Resource Type: Resource, service resource, data or information resource, data repository, storage service resource, database

A public curated compilation of allele frequency data on anthropologically defined human population samples linked to the molecular genetics-human genome databases. Only data on well defined population samples that are large enough to yield reasonably accurate frequencies and for polymorphisms sufficiently defined to be replicable can be included in ALFRED. Researchers wishing to have their data entered into ALFRED should contact them. Initially, ALFRED contained primarily data generated in the laboratories of K.K. and J.R. Kidd in the Department of Genetics at Yale, including extensive unpublished data. Data from the published literature are being entered into ALFRED in a systematic way, with a focus on polymorphisms studied in many different populations. ALFRED is distinct from such databases as dbSNP, which catalogs sequence variation. ALFRED's focus is on allele frequencies in diverse anthropologically defined populations. It is not a compendium of human DNA polymorphisms but of frequencies of selected polymorphisms with an emphasis on those that have been studied in multiple populations. All of the data in ALFRED are considered to be in the public domain and available for use in research and teaching. ALFRED provides easy searching options including versatile "Keyword search" and also has numerous summary tables providing quick overviews of contents by chromosome, population, average heterozygosity, Fst and others, all available under various tabs from the ALFRED homepage.

  • From Current Category

Cite this (Algal Functional Annotation Tool, RRID:SCR_012034)

URL: http://pathways.mcdb.ucla.edu/algal/

Resource Type: Resource, data analysis service, database, analysis service resource, production service resource, service resource, data or information resource

Tools to search gene lists for functional term enrichment as well as to dynamically visualize proteins onto pathway maps. Additionally, integrated expression data may be used to discover similarly expressed genes based on a starting gene of interest.

  • From Current Category

Cite this (Allen Institute Neurowiki, RRID:SCR_005042)

URL: http://neurowiki.alleninstitute.org/index.php/Main_Page

Resource Type: Resource, wiki, data or information resource, database, narrative resource, ontology, controlled vocabulary

THIS RESOURCE IS NO LONGER IN SERVCE, documented September 6, 2016. The Allen Institute Neurowiki is a joint project between Vulcan Inc. and the Allen Institute to build a Semantic Wiki mapping genetic instances. It is a finished prototype testing the import pipelines and display componenets for combining 5 major RDF datasets from 4 different sources. Current planning includes mapping complete datasets, curating a better ontology, and creating multiple ontology management for a user class. Biological Linked Data Map: * Open, public online access * Data from multiple RDF data stores * Complete import pipeline using LDIF framework * Outlines of each imported instance embedding inline wiki properties and providing views of imported properties from original RDF datasets * Charting tools that ''''pivot'''' SPARQL queries providing several views of each query * Navigation and composition tools for accessing and mining the data Where did we get the data? * KEGG: Kyoto Encyclopedia of Genes and Genomes: KEGG GENES is a collection of gene catalogs for all complete genomes generated from publicly available resources, mostly NCBI RefSeq * Diseasome: The Diseasome website is a disease / disorder relationships explorer and a sample of an innovative map-oriented scientific work. Built by a team of researchers and engineers, it uses the Human Disease Network dataset. * DrugBank: The DrugBank database is a unique bioinformatics and cheminformatics resource that combines detailed drug data with comprehensive drug target information. * Sider: Sider contains information on marketed medicines and their recorded adverse drug reactions. The information is extracted from public documents and package inserts. Every piece of content on every instance page is generated by Semantic Result Formatters interpreting SPARQL results.

  • From Current Category

Cite this (Alliance of Genome Resources , RRID:SCR_015850)

URL: http://www.alliancegenome.org/

Resource Type: Organization, organization portal, consortium, service resource, portal, access service resource, data or information resource

Organization that aims to develop and maintain sustainable genome information resources to promote understanding of the genetic and genomic basis of human biology, health, and disease. The Alliance is composed of FlyBase, Mouse Genome Database (MGD), the Gene Ontology Consortium (GOC), Saccharomyces Genome Database (SGD), Rat Genome Database (RGD), WormBase, and the Zebrafish Information Network (ZFIN).

  • From Current Category

Cite this (Allopathfinder, RRID:SCR_002702)

URL: https://simtk.org/home/allopathfinder

Resource Type: Resource, software resource, software application, source code

Software application and code base that allows users to compute likely allosteric pathways in proteins. The underlying assumption is that residues participating in allosteric communication should be fairly conserved and that communication happens through residues that are close in space. The initial application for the code provided was to study the allosteric communication in myosin. Myosin is a well-studied molecular motor protein that walks along actin filaments to achieve cellular tasks such as movement of cargo proteins. It couples ATP hydrolysis to highly-coordinated conformational changes that result in a power-stroke motion, or "walking" of myosin. Communication between a set of residues must link the three functional regions of myosin and transduce energy: the catalytic ATP binding region, the lever arm, and the actin-binding domain. They are investigating which residues are likely to participate in allosteric communication pathways. The application is a collection of C++/QT code, suitable for reproducing the computational results of the paper. (PMID 17900617) In addition, they provide input and alignment information to reproduce Figure 3 (a key figure) in the paper. Examples provided will show users how to use AlloPathFinder with other protein families, assumed to exhibit an allosteric communication. To run the application a multiple sequence alignment of representative proteins from the protein family is required along with at least one protein structure.

  • From Current Category

  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X