Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Search

Type in a keyword to search

on page 1 showing 20 out of 190 results

    PIRSF

Cite this (PIRSF, RRID:SCR_003352)

URL: http://pir.georgetown.edu/pirwww/dbinfo/pirsf.shtml

Resource Type: Resource, narrative resource, database, standard specification, data or information resource

A SuperFamily classification system, with rules for functional site and protein name, to facilitate the sensible propagation and standardization of protein annotation and the systematic detection of annotation errors. The PIRSF concept is being used as a guiding principle to provide comprehensive and non-overlapping clustering of UniProtKB sequences into a hierarchical order to reflect their evolutionary relationships. The PIRSF classification system is based on whole proteins rather than on the component domains; therefore, it allows annotation of generic biochemical and specific biological functions, as well as classification of proteins without well-defined domains. There are different PIRSF classification levels. The primary level is the homeomorphic family, whose members are both homologous (evolved from a common ancestor) and homeomorphic (sharing full-length sequence similarity and a common domain architecture). At a lower level are the subfamilies which are clusters representing functional specialization and/or domain architecture variation within the family. Above the homeomorphic level there may be parent superfamilies that connect distantly related families and orphan proteins based on common domains. Because proteins can belong to more than one domain superfamily, the PIRSF structure is formally a network. The FTP site provides free download for PIRSF.

  • From Current Category

Cite this (MethylomeDB, RRID:SCR_005583)

URL: http://www.neuroepigenomics.org/methylomedb/

Resource Type: Resource, data or information resource, database

A database containing genome-wide brain DNA methylation profiles for human and mouse brains. The DNA methylation profiles were generated by Methylation Mapping Analysis by Paired-end Sequencing (Methyl-MAPS) method and analyzed by Methyl-Analyzer software package. The methylation profiles cover over 80% CpG dinucleotides in human and mouse brains in single-CpG resolution. The integrated genome browser (modified from UCSC Genome Browser allows users to browse DNA methylation profiles in specific genomic loci, to search specific methylation patterns, and to compare methylation patterns between individual samples. Two species were included in the Brain Methylome Database: human and mouse. Human postmortem brain samples were obtained from three distinct cortical regions, i.e., dorsal lateral prefrontal cortex (dlPFC), ventral prefrontal cortex (vPFC), and auditory cortex (AC). Human samples were selected from our postmortem brain collection with extensive neuropathological and psychopathological data, as well as brain toxicology reports. The Department of Psychiatry of Columbia University and the New York State Psychiatric Institute have assembled this brain collection, where a validated psychological autopsy method is used to generate Axis I and II DSM IV diagnoses and data are obtained on developmental history, history of psychiatric illness and treatment, and family history for each subject. The mouse sample (strain 129S6/SvEv) DNA was collected from the entire left cerebral hemisphere. The three human brain regions were selected because they have been implicated in the neuropathology of depression and schizophrenia. Within each cortical region, both disease and non-psychiatric samples have been profiled (matching subjects by age and sex in each group). Such careful matching of subjects allows one to perform a wide range of queries with the ability to characterize methylation features in non-psychiatric controls, as well as detect differentially methylated domains or features between disease and non-psychiatric samples. A total of 14 non-psychiatric, 9 schizophrenic, and 6 depression methylation profiles are included in the database.

  • From Current Category

Cite this (Antibody Validation Database, RRID:SCR_011996)

URL: http://compbio.med.harvard.edu/antibodies/

Resource Type: Resource, service resource, data or information resource, data repository, storage service resource, database

The aim of this site is to collect and to share experimental results on antibodies that would otherwise remain in laboratories, thus aiding researchers in selection and validation of antibodies.

  • From Current Category

Cite this (Mouse Single Nucleotide Polymorphism Database, RRID:SCR_000033)

URL: http://mousesnp.roche.com/

Resource Type: Resource, data or information resource, database

THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 17, 2013. This website contains a database of the mouse SNP. DNA sequencing was performed along with genotyping. There is information on genotyping, mouse strain, and haplotype map.

  • From Current Category

Cite this ( Type 1 Diabetes Genetics Consortium , RRID:SCR_001557)

URL: https://www.t1dgc.org/

Resource Type: Resource, disease-related portal, topical portal, resource, research forum portal, portal, data or information resource

Data and biological samples were collected by this consortium organizing international efforts to identify genes that determine an individual risk of type 1 diabetes. It originally focused on recruiting families with at least two siblings (brothers and/or sisters) who have type 1 diabetes (affected sibling pair or ASP families). The T1DGC completed enrollment for these families in August 2009. They completed enrollment of trios (father, mother, and a child with type 1 diabetes), as well as cases (people with type 1 diabetes) and controls (people with no history of type 1 diabetes) from populations with a low prevalence of this disease in January 2010. T1DGC Data and Samples: Phenotypic and genotypic data as well as biological samples (DNA, serum and plasma) for T1DGC participants have been deposited in the NIDDKCentral Repositories for future research.

  • From Current Category

Cite this (Drosophila anatomy and development ontologies, RRID:SCR_001607)

URL: http://sourceforge.net/p/fbbtdv/wiki/Home/

Resource Type: Resource, ontology, data or information resource, controlled vocabulary

A structured controlled vocabulary of the anatomy of Drosophila melanogaster. These ontologies are query-able reference sources for information on Drosophila anatomy and developmental stages. They also provide controlled vocabularies for use in annotation and classification of data related to Drosophila anatomy, such as gene expression, phenotype and images. They were originally developed by FlyBase, who continue to maintain them and have used them for over 200,000 annotations of phenotypes and expression. Extensive use of synonyms means that, given a suitably sophisticated autocomplete, users can find relevant content by searching with almost any anatomical term they find in the literature. These ontologies are developed in the web ontology language OWL2. Their extensive formalization in OWL can be used to drive sophisticated query systems.

  • From Current Category

Cite this (Pathway Commons, RRID:SCR_002103)

URL: http://www.pathwaycommons.org/pc

Resource Type: Resource, web service, software resource, data or information resource, data access protocol, database

Database of publicly available pathways from multiple organisms and multiple sources represented in a common language. Pathways include biochemical reactions, complex assembly, transport and catalysis events, and physical interactions involving proteins, DNA, RNA, small molecules and complexes. Pathways were downloaded directly from source databases. Each source pathway database has been created differently, some by manual extraction of pathway information from the literature and some by computational prediction. Pathway Commons provides a filtering mechanism to allow the user to view only chosen subsets of information, such as only the manually curated subset. The quality of Pathway Commons pathways is dependent on the quality of the pathways from source databases. Pathway Commons aims to collect and integrate all public pathway data available in standard formats. It currently contains data from nine databases with over 1,668 pathways, 442,182 interactions,414 organisms and will be continually expanded and updated. (April 2013)

  • From Current Category

Cite this (Diseasome, RRID:SCR_002792)

URL: http://diseasome.eu

Resource Type: Resource, narrative resource, map, image, data set, book, service resource, data or information resource

A disease / disorder relationships explorer and a sample of a map-oriented scientific work. It uses the Human Disease Network dataset and allows intuitive knowledge discovery by mapping its complexity. The Human Disease Network (official) dataset, a poster of the data and related book (Biology - The digital era, ISBN: 978-2-271-06779-1) are available. This kind of data has a network-like organization, and relations between elements are at least as important as the elements themselves. More data could be integrated to this prototype and could eventually bring closer phenotype and genotype. Results should be visual, but also printable. Creating posters can enhance collaborative work. It facilitates discussion and sharing of ideas about the data. This website initiative is an invitation to think about the benefits of networks exploration but above all it tries to outline future designs of scientific information systems.

  • From Current Category

    BioPerl

Cite this (BioPerl, RRID:SCR_002989)

URL: http://www.bioperl.org

Resource Type: Resource, wiki, source code, narrative resource, software repository, software resource, software toolkit, data or information resource

BioPerl is a community effort to produce Perl code which is useful in biology. This toolkit of perl modules is useful in building bioinformatics solutions in Perl. It is built in an object-oriented manner so that many modules depend on each other to achieve a task. The collection of modules in the bioperl-live repository consist of the core of the functionality of bioperl. Additionally auxiliary modules for creating graphical interfaces (bioperl-gui), persistent storage in RDMBS (bioperl-db), running and parsing the results from hundreds of bioinformatics applications (Run package), software to automate bioinformatic analyses (bioperl-pipeline) are all available as Git modules in our repository. The BioPerl toolkit provides a library of hundreds of routines for processing sequence, annotation, alignment, and sequence analysis reports. It often serves as a bridge between different computational biology applications assisting the user to construct analysis pipelines. This chapter illustrates how BioPerl facilitates tasks such as writing scripts summarizing information from BLAST reports or extracting key annotation details from a GenBank sequence record. BioPerl includes modules written by Sohel Merchant of the GO Consortium for parsing and manipulating OBO ontologies. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

  • From Current Category

Cite this (Fungal Genome Initiative, RRID:SCR_003169)

URL: http://www.broad.mit.edu/annotation/fungi/fgi/

Resource Type: Resource, data set, data or information resource

Produces and analyzes sequence data from fungal organisms that are important to medicine, agriculture and industry. The FGI is a partnership between the Broad Institute and the wider fungal research community, with the selection of target genomes governed by a steering committee of fungal scientists. Organisms are selected for sequencing as part of a cohesive strategy that considers the value of data from each organism, given their role in basic research, health, agriculture and industry, as well as their value in comparative genomics.

  • From Current Category

    bioPIXIE

Cite this (bioPIXIE, RRID:SCR_004182)

URL: http://avis.princeton.edu/pixie/index.php

Resource Type: Resource, analysis service resource, data analysis service, service resource, production service resource

bioPIXIE is a general system for discovery of biological networks through integration of diverse genome-wide functional data. This novel system for biological data integration and visualization, allows you to discover interaction networks and pathways in which your gene(s) (e.g. BNI1, YFL039C) of interest participate. The system is based on a Bayesian algorithm for identification of biological networks based on integrated diverse genomic data. To start using bioPIXIE, enter your genes of interest into the search box. You can use ORF names or aliases. If you enter multiple genes, they can be separated by commas or returns. Press ''submit''. bioPIXIE uses a probabilistic Bayesian algorithm to identify genes that are most likely to be in the same pathway/functional neighborhood as your genes of interest. It then displays biological network for the resulting genes as a graph. The nodes in the graph are genes (clicking on each node will bring up SGD page for that gene) and edges are interactions (clicking on each edge will show evidence used to predict this interaction). Most likely, the first results to load on the results page will be a list of significant Gene Ontology terms. This list is calculated for the genes in the biological network created by the bioPIXIE algorithm. If a gene ontology term appears on this list with a low p-value, it is statistically significantly overrepresented in this biological network. As you move the mouse over genes in the network, interactions involving these genes are highlighted. If you click on any of the highlighted interactions graph, evidence pop-up window will appear. The Evidence pop-up lists all evidence for this interaction, with links to the papers that produced this evidence - clicking these links will bring up the relevant source citation(s) in PubMed. You may need to download the Adobe Scalable Vector Graphic (SVG) plugin to utilize the visualization tool (you will be prompted if you need it).

  • From Current Category

Cite this (HapMap 3 and ENCODE 3, RRID:SCR_004563)

URL: http://www.hgsc.bcm.tmc.edu/content/hapmap-3-and-encode-3

Resource Type: Resource, data or information resource, database

Draft release 3 for genome-wide SNP genotyping and targeted sequencing in DNA samples from a variety of human populations (sometimes referred to as the HapMap 3 samples). This release contains the following data: * SNP genotype data generated from 1184 samples, collected using two platforms: the Illumina Human1M (by the Wellcome Trust Sanger Institute) and the Affymetrix SNP 6.0 (by the Broad Institute). Data from the two platforms have been merged for this release. * PCR-based resequencing data (by Baylor College of Medicine Human Genome Sequencing Center) across ten 100-kb regions (collectively referred to as ENCODE 3) in 712 samples. Since this is a draft release, please check this site regularly for updates and new releases. The HapMap 3 sample collection comprises 1,301 samples (including the original 270 samples used in Phase I and II of the International HapMap Project) from 11 populations, listed below alphabetically by their 3-letter labels. Five of the ten ENCODE 3 regions overlap with the HapMap-ENCODE regions; the other five are regions selected at random from the ENCODE target regions (excluding the 10 HapMap-ENCODE regions). All ENCODE 3 regions are 100-kb in size, and are centered within each respective ENCODE region. The HapMap 3 and ENCORE 3 data are downloadable from the ftp site.

  • From Current Category

Cite this (Resource Discovery System, RRID:SCR_005554)

URL: http://biositemaps.ncbcs.org/rds/search.html

Resource Type: Resource, data or information resource, database

Resource Discovery System is a web-accessible and searchable inventory of biomedical research resources. Powered by the Resource Discovery System (RDS) that includes a standards-based informatics infrastructure * Biositemaps Information Model * Biomedical Resource Ontology Extensions * Web Services distributed web-accessible inventory framework * Biositemap Resource Editor * Resource Discovery System Source code and project documentation to be made available on an open-source basis. Contributing institutions: University of Pittsburgh, University of Michigan, Stanford University, Oregon Health & Science University, University of Texas Houston. Duke University, Emory University, University of California Davis, University of California San Diego, National Institutes of Health, Inventory Resources Working Group Members

  • From Current Category

Cite this (CharProtDB: Characterized Protein Database, RRID:SCR_005872)

URL: http://www.jcvi.org/charprotdb/index.cgi/home

Resource Type: Resource, data or information resource, database

The Characterized Protein Database, CharProtDB, is designed and being developed as a resource of expertly curated, experimentally characterized proteins described in published literature. For each protein record in CharProtDB, storage of several data types is supported. It includes functional annotation (several instances of protein names and gene symbols) taxonomic classification, literature links, specific Gene Ontology (GO) terms and GO evidence codes, EC (Enzyme Commisssion) and TC (Transport Classification) numbers and protein sequence. Additionally, each protein record is associated with cross links to all public accessions in major protein databases as ??synonymous accessions??. Each of the above data types can be linked to as many literature references as possible. Every CharProtDB entry requires minimum data types to be furnished. They are protein name, GO terms and supporting reference(s) associated to GO evidence codes. Annotating using the GO system is of importance for several reasons; the GO system captures defined concepts (the GO terms) with unique ids, which can be attached to specific genes and the three controlled vocabularies of the GO allow for the capture of much more annotation information than is traditionally captured in protein common names, including, for example, not just the function of the protein, but its location as well. GO evidence codes implemented in CharProtDB directly correlate with the GO consortium definitions of experimental codes. CharProtDB tools link characterization data from multiple input streams through synonymous accessions or direct sequence identity. CharProtDB can represent multiple characterizations of the same protein, with proper attribution and links to database sources. Users can use a variety of search terms including protein name, gene symbol, EC number, organism name, accessions or any text to search the database. Following the search, a display page lists all the proteins that match the search term. Click on the protein name to view more detailed annotated information for each protein. Additionally, each protein record can be annotated.

  • From Current Category

Cite this (PubSearch, RRID:SCR_005830)

URL: http://pubsearch.stanford.edu/

Resource Type: Resource, service resource, software resource, data or information resource, database

THIS RESOURCE IS NO LONGER IN SERVCE, documented September 2, 2016. PubSearch is a web-based literature curation tool, allowing curators to search and annotate genes to keywords from articles. It has a simple mySQL database backend and uses a set of Java Servlets and JSPs for querying, modifying, and adding gene, gene-annotation, and literature information. PubSearch can be downloaded from GMOD. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

  • From Current Category

Cite this ( OligoGenome , RRID:SCR_006025)

URL: http://oligogenome.stanford.edu/

Resource Type: Resource, data or information resource, resource, database

The Stanford Human OligoGenome Project hosts a database of capture oligonucleotides for conducting high-throughput targeted resequencing of the human genome. This set of capture oligonucleotides covers over 92% of the human genome for build 37 / hg19 and over 99% of the coding regions defined by the Consensus Coding Sequence (CCDS). The capture reaction uses a highly multiplexed approach for selectively circularizing and capturing multiple genomic regions using the in-solution method developed in Natsoulis et al, PLoS One 2011. Combined pools of capture oligonucleotides selectively circularize the genomic DNA target, followed by specific PCR amplification of regions of interest using a universal primer pair common to all of the capture oligonucleotides. Unlike multiplexed PCR methods, selective genomic circularization is capable of efficiently amplifying hundreds of genomic regions simultaneously in multiplex without requiring extensive PCR optimization or producing unwanted side reaction products. Benefits of the selective genomic circularization method are the relative robustness of the technique and low costs of synthesizing standard capture oligonucleotide for selecting genomic targets.

  • From Current Category

Cite this (phenomeNET, RRID:SCR_006165)

URL: http://phenomebrowser.net/

Resource Type: Resource, source code, data analysis service, database, analysis service resource, production service resource, service resource, software resource, data or information resource

PhenomeNet is a cross-species phenotype similarity network. It contains the experimentally observed phenotypes of multiple species as well as the phenotypes of human diseases. PhenomeNet provides a measure of phenotypic similarity between the phenotypes it contains. The latest release (from 22 June 2012) contains 124,730 complex phenotype nodes taken from the yeast, fish, worm, fly, rat, slime mold and mouse model organism databases as well as human disease phenotypes from OMIM and OrphaNet. The network is a complete graph in which edge weights represent the degree of phenotypic similarity. Phenotypic similarity can be used to identify and prioritize candidate disease genes, find genes participating in the same pathway and orthologous genes between species. To compute phenotypic similarity between two sets of phenotypes, we use a weighted Jaccard index. First, phenotype ontologies are used to infer all the implications of a phenotype observation using several phenotype ontologies. As a second step, the information content of each phenotype is computed and used as a weight in the Jaccard index. Phenotypic similarity is useful in several ways. Phenotypic similarity between a phenotype resulting from a genetic mutation and a disease can be used to suggest candidate genes for a disease. Phenotypic similarity can also identify genes in a same pathway or orthologous genes. PhenomeNet uses the axioms in multiple species-dependent phenotype ontologies to infer equivalent and related phenotypes across species. For this purpose, phenotype ontologies and phenotype annotations are integrated in a single ontology, and automated reasoning is used to infer equivalences. Specifically, for every phenotype, PhenomeNet infers the related mammalian phenotype and uses the Mammalian Phenotype Ontology for computing phenotypic similarity. Tools: * PhenomeBLAST - A tool for cross-species alignments of phenotypes * PhenomeDrug - method for drug-repurposing

  • From Current Category

Cite this (Sanger Mouse Resources Portal, RRID:SCR_006239)

URL: http://www.sanger.ac.uk/mouseportal/

Resource Type: Resource, database, biomaterial supply resource, production service resource, material service resource, service resource, cell repository, material resource, biomaterial manufacture, data or information resource

Database of mouse research resources at Sanger: BACs, targeting vectors, targeted ES cells, mutant mouse lines, and phenotypic data generated from the Institute''''s primary screen. The Wellcome Trust Sanger Institute generates, characterizes, and uses a variety of reagents for mouse genetics research. It also aims to facilitate the distribution of these resources to the external scientific community. Here, you will find unified access to the different resources available from the Institute or its collaborators. The resources include: 129S7 and C57BL6/J bacterial artificial chromosomes (BACs), MICER gene targeting vectors, knock-out first conditional-ready gene targeting vectors, embryonic stem (ES) cells with gene targeted mutations or with retroviral gene trap insertions, mutant mouse lines, and phenotypic data generated from the Institute''''s primary screen.

  • From Current Category

Cite this ( Genotype-IBD Sharing Test , RRID:SCR_006257)

URL: http://chgr.mc.vanderbilt.edu/page/gist

Resource Type: Resource, software resource, software application, resource

Software package to test if a marker can account in part for the linkage signal in its region. There are two versions of the software: Windows and Linux/Unix.

  • From Current Category

Cite this (Public Expression Profiling Resource, RRID:SCR_007274)

URL: http://pepr.cnmcresearch.org/

Resource Type: Resource, data or information resource, database

An experiment in web-database access to large multi-dimensional data sets using a standardized experimental platform to determine if the larger scientific community can be given simple, intuitive, and user-friendly web-based access to large microarray data sets. All data in PEPR is also available via NCBI GEO. The structure and goals of PEPR differ from other mRNA expression profiling databases in a number of important ways. * The experimental platform in PEPR is standardized, and is an Affymetrix - only database. All microarrays available in the PEPR web database should ascribe to quality control and standard operating procedures. A recent publication has described the QC/SOP criteria utilized in PEPR profiles ( The Tumor Analysis Best Practices Working Group 2004 ). * PEPR permits gene-based queries of large Affymetrix array data sets without any specialized software. For example, a number of large time series projects are available within PEPR, containing 40-60 microarrays, yet these can be simply queried via a dynamic web interface with no prior knowledge of microarray data analysis. * Projects in PEPR originate from scientists world-wide, but all data has been generated by the Research Center for Genetic Medicine, Children''''s National Medical Center, Washington DC. Future developments of PEPR will allow remote entry of Affymetrix data ascribing to the same QC/SOP protocols. They have previously described an initial implementation of PEPR, and a dynamic web-queried time series graphical interface ( Chen et al. 2004 ). A publication showing the utility of PEPR for pharmacodynamic data has recently been published ( Almon et al. 2003 ).

  • From Current Category

  1. RRID Portal Resources

    Welcome to the RRID Resources search. From here you can search through a compilation of resources used by RRID and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that RRID has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on RRID then you can log in from here to get additional features in RRID such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into RRID you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within RRID that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X