Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

3D-Interologs (RRID:SCR_003101)


http://gemdock.life.nctu.edu.tw/3D-Interologs

Database of physical protein-protein interactions across multiple genomes. Based on 3D-domain interolog mapping and a scoring function, protein-protein interactions are inferred by using three-dimensional (3D) structure heterodimers to search the UniProt database. For a query protein, the database utilizes BLAST to identify homologous proteins and the interacting partners from multiple species. Based on the scoring function and structure complexes, it provides the statistic significances, the interacting models (e.g. hydrogen bonds and conserved amino acids), and functional annotations of interacting partners of a query protein. The identification of orthologous proteins of multiple species allows the study of protein-protein evolution, protein functions, and cross-referencing of proteins.


Keywords

interolog, protein-protein interaction, blast, homolog, protein, interaction, function

Resource ID

SCR_003101

Alternate IDs

nif-0000-00554, OMICS_01896

Website Status

Last checked up

Abbreviation(s)

3D-interologs

Resource Type

Resource, data analysis service, production service resource, analysis service resource, database, service resource, data or information resource

Availability

Resource:OMICtools, Resource:UniProt

Proper citation

(3D-Interologs, RRID:SCR_003101)

Alternate URLs

http://3D-interologs.life.nctu.edu.tw

Reference

PMID:21143789

Other resources frequently mentioned in the literature with this resource

SciCrunch Registry

Interactive portal for finding and submitting biomedical resources. Resources within SciCrunch are assigned RRIDs which are used to cite resources in scientific manuscripts.

3D-interologs: an evolution database of physical protein- protein interactions across multiple genomes.

  • Lo YS
  • BMC Genomics
  • 2010 Dec 1

BACKGROUND: Comprehensive exploration of protein-protein interactions is a challenging route to understand biological processes. For efficiently enlarging protein interactions annotated with residue-based binding models, we proposed a new concept "3D-domain interolog mapping" with a scoring system to explore all possible protein pairs between the two homolog families, derived from a known 3D-structure dimmer (template), across multiple species. Each family consists of homologous proteins which have interacting domains of the template for studying domain interface evolution of two interacting homolog families. RESULTS: The 3D-interologs database records the evolution of protein-protein interactions database across multiple species. Based on "3D-domain interolog mapping" and a new scoring function, we infer 173,294 protein-protein interactions by using 1,895 three-dimensional (3D) structure heterodimers to search the UniProt database (4,826,134 protein sequences). The 3D- interologs database comprises 15,124 species and 283,980 protein-protein interactions, including 173,294 interactions (61%) and 110,686 interactions (39%) summarized from the IntAct database. For a protein-protein interaction, the 3D-interologs database shows functional annotations (e.g. Gene Ontology), interacting domains and binding models (e.g. hydrogen-bond interactions and conserved residues). Additionally, this database provides couple-conserved residues and the interacting evolution by exploring the interologs across multiple species. Experimental results reveal that the proposed scoring function obtains good agreement for the binding affinity of 275 mutated residues from the ASEdb. The precision and recall of our method are 0.52 and 0.34, respectively, by using 563 non-redundant heterodimers to search on the Integr8 database (549 complete genomes). CONCLUSIONS: Experimental results demonstrate that the proposed method can infer reliable physical protein-protein interactions and be useful for studying the protein-protein interaction evolution across multiple species. In addition, the top-ranked strategy and template interface score are able to significantly improve the accuracies of identifying protein-protein interactions in a complete genome. The 3D-interologs database is available at http://3D- interologs.life.nctu.edu.tw.

Co-mentions heatmap

Load a heatmap of the top 20 resources that share the most co-mentions with this resource in the literature.


  1. Information

    Information on this specific resource.

  2. Relationships

    See other resources that this resources is related to.

  3. References

    Publications describing this resource.

  4. Referenced by

    Publications that reference this resource. These references are discovered by human submissions and automated crawling through various journals.

  5. Analytics

    Search for other resources that are referenced by publications that reference this resource.

  6. Data

    This resource is also a data repository used by SciCrunch. Search through the data.

  7. Data Licenses

    The licenses the data is under.

  8. Source

    The data repository this resource is listed from.