X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Claudin 4 Polyclonal Antibody

RRID:AB_2336056

Antibody ID

AB_2336056

Target Antigen

Actin human, mouse, rat

Proper Citation

(Thermo Fisher Scientific Cat# ICN691001, RRID:AB_2336056)

Clonality

monoclonal antibody

Comments

Discontinued; The following antibodies were determined to be duplicates and consolidated by curator on 10/2018: AB_2335127, AB_2336056.

Clone ID

C4

Host Organism

mouse

Vendor

Thermo Fisher Scientific

Cat Num

ICN691001

Publications that use this research resource

Glucosylsphingosine Promotes α-Synuclein Pathology in Mutant GBA-Associated Parkinson's Disease.

  • Taguchi YV
  • J. Neurosci.
  • 2017 Oct 4

Literature context:


Abstract:

Glucocerebrosidase 1 (GBA) mutations responsible for Gaucher disease (GD) are the most common genetic risk factor for Parkinson's disease (PD). Although the genetic link between GD and PD is well established, the underlying molecular mechanism(s) are not well understood. We propose that glucosylsphingosine, a sphingolipid accumulating in GD, mediates PD pathology in GBA-associated PD. We show that, whereas GD-related sphingolipids (glucosylceramide, glucosylsphingosine, sphingosine, sphingosine-1-phosphate) promote α-synuclein aggregation in vitro, glucosylsphingosine triggers the formation of oligomeric α-synuclein species capable of templating in human cells and neurons. Using newly generated GD/PD mouse lines of either sex [Gba mutant (N370S, L444P, KO) crossed to α-synuclein transgenics], we show that Gba mutations predispose to PD through a loss-of-function mechanism. We further demonstrate that glucosylsphingosine specifically accumulates in young GD/PD mouse brain. With age, brains exhibit glucosylceramide accumulations colocalized with α-synuclein pathology. These findings indicate that glucosylsphingosine promotes pathological aggregation of α-synuclein, increasing PD risk in GD patients and carriers.SIGNIFICANCE STATEMENT Parkinson's disease (PD) is a prevalent neurodegenerative disorder in the aging population. Glucocerebrosidase 1 mutations, which cause Gaucher disease, are the most common genetic risk factor for PD, underscoring the importance of delineating the mechanisms underlying mutant GBA-associated PD. We show that lipids accumulating in Gaucher disease, especially glucosylsphingosine, play a key role in PD pathology in the brain. These data indicate that ASAH1 (acid ceramidase 1) and GBA2 (glucocerebrosidase 2) enzymes that mediate glucosylsphingosine production and metabolism are attractive therapeutic targets for treating mutant GBA-associated PD.

Funding information:
  • NIAMS NIH HHS - R01 AR065932()
  • NIGMS NIH HHS - T32 GM007223()
  • NINDS NIH HHS - R01 NS064963()
  • NINDS NIH HHS - R01 NS083846()
  • NINDS NIH HHS - T32 NS007224()

Loss of Frataxin activates the iron/sphingolipid/PDK1/Mef2 pathway in mammals.

  • Chen K
  • Elife
  • 2016 Nov 30

Literature context:


Abstract:

Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by mutations in Frataxin (FXN). Loss of FXN causes impaired mitochondrial function and iron homeostasis. An elevated production of reactive oxygen species (ROS) was previously proposed to contribute to the pathogenesis of FRDA. We recently showed that loss of frataxin homolog (fh), a Drosophila homolog of FXN, causes a ROS independent neurodegeneration in flies (Chen et al., 2016). In fh mutants, iron accumulation in the nervous system enhances the synthesis of sphingolipids, which in turn activates 3-phosphoinositide dependent protein kinase-1 (Pdk1) and myocyte enhancer factor-2 (Mef2) to trigger neurodegeneration of adult photoreceptors. Here, we show that loss of Fxn in the nervous system in mice also activates an iron/sphingolipid/PDK1/Mef2 pathway, indicating that the mechanism is evolutionarily conserved. Furthermore, sphingolipid levels and PDK1 activity are also increased in hearts of FRDA patients, suggesting that a similar pathway is affected in FRDA.

Funding information:
  • NIDDK NIH HHS - U24 DK059637(United States)

EGFR Dynamics Change during Activation in Native Membranes as Revealed by NMR.

  • Kaplan M
  • Cell
  • 2016 Nov 17

Literature context:


Abstract:

The epidermal growth factor receptor (EGFR) represents one of the most common target proteins in anti-cancer therapy. To directly examine the structural and dynamical properties of EGFR activation by the epidermal growth factor (EGF) in native membranes, we have developed a solid-state nuclear magnetic resonance (ssNMR)-based approach supported by dynamic nuclear polarization (DNP). In contrast to previous crystallographic results, our experiments show that the ligand-free state of the extracellular domain (ECD) is highly dynamic, while the intracellular kinase domain (KD) is rigid. Ligand binding restricts the overall and local motion of EGFR domains, including the ECD and the C-terminal region. We propose that the reduction in conformational entropy of the ECD by ligand binding favors the cooperative binding required for receptor dimerization, causing allosteric activation of the intracellular tyrosine kinase.

A Two-Immunoglobulin-Domain Transmembrane Protein Mediates an Epidermal-Neuronal Interaction to Maintain Synapse Density.

  • Cherra SJ
  • Neuron
  • 2016 Jan 20

Literature context:


Abstract:

Synaptic maintenance is essential for neural circuit function. In the C. elegans locomotor circuit, motor neurons are in direct contact with the epidermis. Here, we reveal a novel epidermal-neuronal interaction mediated by a two-immunoglobulin domain transmembrane protein, ZIG-10, that is necessary for maintaining cholinergic synapse density. ZIG-10 is localized at the cell surface of epidermis and cholinergic motor neurons, with high levels at areas adjacent to synapses. Loss of zig-10 increases the number of cholinergic excitatory synapses and exacerbates convulsion behavior in a seizure model. Mis-expression of zig-10 in GABAergic inhibitory neurons reduces GABAergic synapse number, dependent on the presence of ZIG-10 in the epidermis. Furthermore, ZIG-10 interacts with the tyrosine kinase SRC-2 to regulate the phagocytic activity of the epidermis to restrict cholinergic synapse number. Our studies demonstrate the highly specific roles of non-neuronal cells in modulating neural circuit function, through neuron-type-specific maintenance of synapse density.