X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

GR (M-20) antibody

RRID:AB_2155786

Antibody ID

AB_2155786

Target Antigen

GR (M-20) human, mouse, rat, mouse, rat > human

Proper Citation

(Santa Cruz Biotechnology Cat# sc-1004, RRID:AB_2155786)

Clonality

polyclonal antibody

Comments

Discontinued: 2016; validation status unknown check with seller; recommendations: Immunohistochemistry; Immunoprecipitation; Immunocytochemistry; Western Blot; ELISA; Immunofluorescence; WB, IP, IF, IHC(P), ELISA

Host Organism

rabbit

Vendor

Santa Cruz Biotechnology

Knockout of USP19 Deubiquitinating Enzyme Prevents Muscle Wasting by Modulating Insulin and Glucocorticoid Signaling.

  • Coyne ES
  • Endocrinology
  • 2018 Jun 12

Literature context:


Abstract:

Muscle atrophy arises as a consequence of many chronic illnesses, as well as from prolonged glucocorticoid treatment and nutrient deprivation. We previously demonstrated that the USP19 deubiquitinating enzyme plays an important role in chronic glucocorticoid and denervation induced muscle wasting. However, the mechanisms by which USP19 exerts its effects remain unknown. To explore this further, we fasted mice for 48 hours to try to identify early differences in the response of WT and USP19 KO mice that could yield insights into the mechanisms of USP19 action. USP19 KO mice manifested less myofiber atrophy in response to fasting due to increased rates of protein synthesis. Insulin signaling was enhanced in the KO mice as revealed by lower circulating insulin levels, increased insulin stimulated glucose disposal and phosphorylation of pAkt and pS6K in muscle and improved overall glucose tolerance. Glucocorticoid signaling, which is essential in many conditions of atrophy, was decreased in KO muscle as revealed by decreased expression of glucocorticoid receptor (GR) target genes upon both fasting and glucocorticoid treatment. This decreased GR signaling was associated with lower GR protein levels in the USP19 KO muscle. Restoring the GR levels in USP19 deficient muscle was sufficient to abolish the protection from myofiber atrophy. Expression of GR target genes also correlated with that of USP19 in human muscle samples. Thus, USP19 modulates GR levels and in so doing may modulate both insulin and glucocorticoid signaling, two critical pathways that control protein turnover in muscle and overall glucose homeostasis.

Funding information:
  • Biotechnology and Biological Sciences Research Council - BBS/E/B/000C0419(United Kingdom)

BRG1 governs glucocorticoid receptor interactions with chromatin and pioneer factors across the genome.

  • Hoffman JA
  • Elife
  • 2018 May 24

Literature context:


Abstract:

The Glucocorticoid Receptor (GR) alters transcriptional activity in response to hormones by interacting with chromatin at GR binding sites (GBSs) throughout the genome. Our work in human breast cancer cells identifies three classes of GBSs with distinct epigenetic characteristics and reveals that BRG1 interacts with GBSs prior to hormone exposure. The GBSs pre-occupied by BRG1 are more accessible and transcriptionally active than other GBSs. BRG1 is required for a proper and robust transcriptional hormone response and knockdown of BRG1 blocks recruitment of the pioneer factors FOXA1 and GATA3 to GBSs. Finally, GR interaction with FOXA1 and GATA3 binding sites was restricted to sites pre-bound by BRG1. These findings demonstrate that BRG1 establishes specialized chromatin environments that define multiple classes of GBS. This in turn predicts that GR and other transcriptional activators function via multiple distinct chromatin-based mechanisms to modulate the transcriptional response.

Funding information:
  • National Institute of Environmental Health Sciences - Z01 ES071006-17()
  • NHLBI NIH HHS - HL-69256(United States)

Methylation of glucocorticoid receptor gene promoter modulates morphine dependence and accompanied hypothalamus-pituitary-adrenal axis dysfunction.

  • Zhu J
  • J. Neurosci. Res.
  • 2018 Mar 12

Literature context:


Abstract:

Previous studies demonstrated that dysfunction of the hypothalamus-pituitary-adrenal (HPA) axis played an important role in morphine dependence. Nonetheless, the molecular mechanism underlying morphine-induced HPA axis dysfunction and morphine dependence remains unclear. In the current study, 5'-aza-2'-deoxycytidine (5-aza), an inhibitor of DNA methyltransferases (DNMTs), was used to examine the effects of glucocorticoid receptor (GR) promoter 17 methylation on chronic morphine-induced HPA axis dysfunction and behavioral changes in rats and the underlying mechanism. Our results showed that chronic but not acute morphine downregulated the expression of nuclear GR protein and GR exon 17 variant mRNA, and upregulated the methylation of GR 17 exon promoter in the hippocampus of rats. Meanwhile, 5-aza per se had no effect on observed molecular and behavior change. In contrast, pretreatment of 5-aza into rat hippocampus reversed chronic morphine-induced hypermethylation of GR 17 promoter and decrease in GR expression. Moreover, pretreatment of 5-aza attenuated chronic morphine-enhanced HPA axis reactivity and the naloxone-precipitated somatic signs in morphine-dependent rats. Our results suggest that chronic morphine induced hypermethylation of GR 17 promoter, which then downregulated the expression of hippocampal GR, and was thus involved in chronic morphine-induced dysfunction of the HPA axis and the modulation of morphine dependence. Moreover, chronic morphine-induced hypermethylation of GR 17 promoter may be at least partially due to the increase in hippocampal DNMT 1 expression and its binding at GR 17 promoter in the rat hippocampus. © 2016 Wiley Periodicals, Inc.

Funding information:
  • NIDCD NIH HHS - R01 DC00189(United States)

Tactile stimulation during different developmental periods modifies hippocampal BDNF and GR, affecting memory and behavior in adult rats.

  • Antoniazzi CT
  • Hippocampus
  • 2018 Jan 10

Literature context:


Abstract:

Recent studies have shown that tactile stimulation (TS) in pups is able to prevent and/or minimize fear, anxiety behaviors, and addiction to psychostimulant drugs in adult rats. In these studies, animals have been exposed to handling from postnatal day (PND) 1-21. This study was designed to precisely establish which period of preweaning development has a greater influence of TS on neuronal development. After birth, male pups were exposed to TS from PND1-7, PND8-14, and PND15-21. In adulthood, the different periods of postnatal TS were assessed through behavioral, biochemical, and molecular assessments. Animals that received TS from PND8-14 showed lower anxiety-like symptoms, as observed by decreased anxiety index in elevated plus maze. This same TS period was able to improve rats' working memory by increasing the percentage of alternation rate in Y-maze, and induce better ability to cope with stressful situations, as showed in the defensive burying test by a reduced time of burying behavior. On the other hand, animals receiving TS in the first week of life showed longest cumulative burying time, which is directly related to increased anxiety-like behavior. Moreover, TS from PND8-14 showed lower corticosterone levels and better oxidative status, as observed by decreased lipid peroxidation and increased catalase activity in the hippocampus. Brain-derived neurotrophic factor (BDNF) immunocontent was increased in the hippocampus of animals receiving TS from PND8-14, while glucocorticoid receptors immunocontent was decreased in both TS1-7 and TS15-21 , but not TS8-14 . To the best of our knowledge, this study is the first to show TS can be more efficient if applied over a focused period of neonatal development (PND8-14) and this beneficial influence can be reflected on reduced emotionality and increased ability to address stressful situations in adulthood. © 2016 Wiley Periodicals, Inc.

Membrane-bound glucocorticoid receptors on distinct nociceptive neurons as potential targets for pain control through rapid non-genomic effects.

  • Shaqura M
  • Neuropharmacology
  • 2017 Jul 11

Literature context:


Abstract:

Glucocorticoids were long believed to primarily function through cytosolic glucocorticoid receptor (GR) activation and subsequent classical genomic pathways. Recently, however, evidence has emerged that suggests the presence of rapid non-genomic GR-dependent signaling pathways within the brain, though their existence in spinal and peripheral nociceptive neurons remains elusive. In this paper, we aim to systemically identify GR within the spinal cord and periphery, to verify their putative membrane location and to characterize possible G protein coupling and pain modulating properties. Double immunofluorescence confocal microscopy revealed that GR predominantly localized in peripheral peptidergic and non-peptidergic nociceptive C- and Aδ-neurons and existed only marginally in myelinated mechanoreceptive and proprioreceptive neurons. Within the spinal cord, GR predominantly localized in incoming presynaptic nociceptive neurons, in pre- and postsynaptic structures of the dorsal horn, as well as in microglia. GR saturation binding revealed that these receptors are linked to the cell membrane of sensory neurons and, upon activation, they trigger membrane targeted [35S]GTPγS binding, indicating G protein coupling to a putative receptor. Importantly, subcutaneous dexamethasone immediately and dose-dependently attenuated acute nociceptive behavior elicited in an animal model of formalin-induced pain hypersensitivity compared to naive rats. Overall, this study provides firm evidence for a novel neuronal mechanism of GR agonists that is rapid, non-genomic, dependent on membrane binding and G protein coupling, and acutely modulates nociceptive behavior, thus unraveling a yet unconsidered mechanism of pain relief.

Funding information:
  • NINDS NIH HHS - T32 NS061764(United States)
  • NINDS NIH HHS - U01 NS090595(United States)

Cholinergic Signals from the CNS Regulate G-CSF-Mediated HSC Mobilization from Bone Marrow via a Glucocorticoid Signaling Relay.

  • Pierce H
  • Cell Stem Cell
  • 2017 May 4

Literature context:


Abstract:

Hematopoietic stem cells (HSCs) are mobilized from niches in the bone marrow (BM) to the blood circulation by the cytokine granulocyte colony-stimulating factor (G-CSF) through complex mechanisms. Among these, signals from the sympathetic nervous system regulate HSC egress via its niche, but how the brain communicates with the BM remains largely unknown. Here we show that muscarinic receptor type-1 (Chrm1) signaling in the hypothalamus promotes G-CSF-elicited HSC mobilization via hormonal priming of the hypothalamic-pituitary-adrenal (HPA) axis. Blockade of Chrm1 in the CNS, but not the periphery, reduces HSC mobilization. Mobilization is impaired in Chrm1-∕- mice and rescued by parabiosis with wild-type mice, suggesting a relay by a blood-borne factor. We have identified the glucocorticoid (GC) hormones as critical for optimal mobilization. Physiological levels of corticosterone promote HSC migration via the GC receptor Nr3c1-dependent signaling and upregulation of actin-organizing molecules. These results uncover long-range regulation of HSC migration emerging from the brain.

Funding information:
  • NHLBI NIH HHS - R01 HL069438()
  • NHLBI NIH HHS - R01 HL097700()
  • NIDDK NIH HHS - R01 DK056638()
  • NIGMS NIH HHS - T32 GM007491()

Impact of High-Fat Diet and Early Stress on Depressive-Like Behavior and Hippocampal Plasticity in Adult Male Rats.

  • Arcego DM
  • Mol. Neurobiol.
  • 2017 Apr 30

Literature context:


Abstract:

During development, the brain goes through fundamental processes, including organization of neural networks and plasticity. Environmental interventions may change initial brain programming, leading to long-lasting effects and altering the susceptibility to psychopathologies, including depression disorder. It is known that depression is a psychiatric disorder with a high prevalence worldwide, including high rates among adolescents. In this study, we evaluated whether social isolation in the prepubertal period and chronic use of high-fat diet (HFD) may induce depressive-like behavior in male adult rats. We also investigated hippocampal plasticity markers and neurotransmitter systems. We found both social isolation and HFD induced a depressive-like behavior in the forced swimming task. Moreover, chronic HFD reduced synaptic markers in hippocampus, demonstrated by reductions in βIII-tubulin (neuronal marker), PSD-95, SNAP-25, and neurotrophin-3. The HFD group also presented decreased glutamatergic and GABAergic receptors subunits. On the other hand, stress affected hippocampal brain-derived neurotrophic factor (BDNF) signaling pathways, and increased expression of subunit of the NMDA receptor (NR2A). Both factors (stress and diet) decreased GR in the hippocampus without affecting plasma corticosterone at basal levels. Interactions between early stress and HFD access were observed only in the BNDF receptor (tropomyosin receptor kinase B; TrkB) and synaptophysin. In summary, these findings showed that a brief social isolation and chronic HFD, during a sensitive developmental period, cause depressive-like behavior in adulthood. The mechanisms underlying these behavioral effects may involve changes in the levels of synaptic proteins in hippocampus: HFD consumption appears to affect synaptic markers, while social isolation affected BDNF signaling more significantly.

AgRP Neuron-Specific Deletion of Glucocorticoid Receptor Leads to Increased Energy Expenditure and Decreased Body Weight in Female Mice on a High-Fat Diet.

  • Shibata M
  • Endocrinology
  • 2016 Apr 2

Literature context:


Abstract:

Agouti-related protein (AgRP) expressed in the arcuate nucleus is a potent orexigenic neuropeptide, which increases food intake and reduces energy expenditure resulting in increases in body weight (BW). Glucocorticoids, key hormones that regulate energy balance, have been shown in rodents to regulate the expression of AgRP. In this study, we generated AgRP-specific glucocorticoid receptor (GR)-deficient (knockout [KO]) mice. Female and male KO mice on a high-fat diet (HFD) showed decreases in BW at the age of 6 weeks compared with wild-type mice, and the differences remained significant until 16 weeks old. The degree of resistance to diet-induced obesity was more robust in female than in male mice. On a chow diet, the female KO mice showed slightly but significantly attenuated weight gain compared with wild-type mice after 11 weeks, whereas there were no significant differences in BW in males between genotypes. Visceral fat pad mass was significantly decreased in female KO mice on HFD, whereas there were no significant differences in lean body mass between genotypes. Although food intake was similar between genotypes, oxygen consumption was significantly increased in female KO mice on HFD. In addition, the uncoupling protein-1 expression in the brown adipose tissues was increased in KO mice. These data demonstrate that the absence of GR signaling in AgRP neurons resulted in increases in energy expenditure accompanied by decreases in adiposity in mice fed HFD, indicating that GR signaling in AgRP neurons suppresses energy expenditure under HFD conditions.

Funding information:
  • NIDCD NIH HHS - R01DC012931(United States)
  • NIDDK NIH HHS - K01 DK081666(United States)

Early intervention with intranasal NPY prevents single prolonged stress-triggered impairments in hypothalamus and ventral hippocampus in male rats.

  • Laukova M
  • Endocrinology
  • 2014 Oct 20

Literature context:


Abstract:

Intranasal administration of neuropeptide Y (NPY) is a promising treatment strategy to reduce traumatic stress-induced neuropsychiatric symptoms of posttraumatic stress disorder (PTSD). We evaluated the potential of intranasal NPY to prevent dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis, a core neuroendocrine feature of PTSD. Rats were exposed to single prolonged stress (SPS), a PTSD animal model, and infused intranasally with vehicle or NPY immediately after SPS stressors. After 7 days undisturbed, hypothalamus and hippocampus, 2 structures regulating the HPA axis activity, were examined for changes in glucocorticoid receptor (GR) and CRH expression. Plasma ACTH and corticosterone, and hypothalamic CRH mRNA, were significantly higher in the vehicle but not NPY-treated group, compared with unstressed controls. Although total GR levels were not altered in hypothalamus, a significant decrease of GR phosphorylated on Ser232 and increased FK506-binding protein 5 mRNA were observed with the vehicle but not in animals infused with intranasal NPY. In contrast, in the ventral hippocampus, only vehicle-treated animals demonstrated elevated GR protein expression and increased GR phosphorylation on Ser232, specifically in the nuclear fraction. Additionally, SPS-induced increase of CRH mRNA in the ventral hippocampus was accompanied by apparent decrease of CRH peptide particularly in the CA3 subfield, both prevented by NPY. The results show that early intervention with intranasal NPY can prevent traumatic stress-triggered dysregulation of the HPA axis likely by restoring HPA axis proper negative feedback inhibition via GR. Thus, intranasal NPY has a potential as a noninvasive therapy to prevent negative effects of traumatic stress.

Funding information:
  • NICHD NIH HHS - U54 HD087101(United States)

Glucocorticoids induce gastroparesis in mice through depletion of l-arginine.

  • Reichardt SD
  • Endocrinology
  • 2014 Oct 20

Literature context:


Abstract:

Glucocorticoids (GCs) constitute a highly pleiotropic class of drugs predominantly employed in the treatment of inflammatory diseases. In our search for new mechanisms of action, we identified a hitherto unknown effect of GCs in the gastrointestinal tract. We found that oral administration of dexamethasone (Dex) to mice caused an enlargement of the stomach due to the induction of gastroparesis and that this effect was abolished in GR(dim) mice carrying the A458T mutation in the GC receptor (GR). Gastroparesis was unrelated to the enhanced gastric acid secretion observed after Dex treatment, although both effects were mediated by the same molecular mechanism of the GR. Using conditional GR-knockout mice, we could further rule out that GC effects on enterocytes or myeloid cells were involved in the induction of gastroparesis. In contrast, we found that Dex upregulated arginase 2 (Arg2) in the stomach both at the mRNA and protein level. This suggests that GC treatment leads to a depletion of l-arginine thereby impeding the production of nitric oxide (NO), which is required for gastric motility. We tested this hypothesis by supplementing the drinking water of the mice with exogenous l-arginine to compensate for the presumed shortage of this major substrate of NO synthases. Importantly, this measure completely prevented both the enlargement of the stomach and the induction of gastroparesis after Dex treatment. Our findings raise considerations of combining orally applied GCs with l-arginine to improve tolerability of GC treatment and provide a possible explanation for the antiemetic effects of GCs widely exploited in chemotherapy.

Funding information:
  • NIGMS NIH HHS - P20 GM104937(United States)
  • NIGMS NIH HHS - T32 GM008471(United States)

Molecular basis for the activation of gonadotropin-inhibitory hormone gene transcription by corticosterone.

  • Son YL
  • Endocrinology
  • 2014 May 21

Literature context:


Abstract:

The inhibitory effect of stress on reproductive function is potentially mediated by high concentrations of circulating glucocorticoids (GCs) acting via the GC receptor (GR). Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that inhibits gonadotropin secretion. GnIH may mediate stress-induced reproductive dysfunction. However, it is not yet known whether GC-bound GR is directly involved in GnIH transcription. Here, we demonstrated the localization of GR mRNA in GnIH neurons in the paraventricular nucleus of quail, suggesting that GC can directly regulate GnIH transcription. We next showed that 24 hours of treatment with corticosterone (CORT) increase GnIH mRNA expression in the quail diencephalon. We further investigated the mechanism of activation of GnIH transcription by CORT using a GnIH-expressing neuronal cell line, rHypoE-23, derived from rat hypothalamus. We found the expression of GR mRNA in rHypoE-23 cells and increased GnIH mRNA expression by 24 hours of CORT treatment. We finally characterized the promoter activity of rat GnIH gene stimulated by CORT. Through DNA deletion analysis, we identified a CORT-responsive region at 2000-1501 bp upstream of GnIH precursor coding region. This region included 2 GC response elements (GREs) at -1665 and -1530 bp. Mutation of -1530 GRE abolished CORT responsiveness. We also found CORT-stimulated GR recruitment at the GnIH promoter region containing the -1530 GRE. These results provide a putative molecular basis for transcriptional activation of GnIH under stress by demonstrating that CORT directly induces GnIH transcription by recruitment of GR to its promoter.

Funding information:
  • NHLBI NIH HHS - K99 HL127178(United States)
  • NHLBI NIH HHS - R01 HL104032(United States)

In vivo actions of the Sertoli cell glucocorticoid receptor.

  • Hazra R
  • Endocrinology
  • 2014 Mar 25

Literature context:


Abstract:

We determined the functional role of the Sertoli cell glucocorticoid receptor (GR) in vivo using a transgenic Cre-loxP approach to conditionally disrupt GR expression. Sertoli cell GR knockout (SCGRKO) was shown by absent Sertoli cell-specific GR immunolocalization and reduced levels of glucocorticoid-responsive Stc1 and Tsc22d3 mRNA in SCGRKO relative to control testes. Adult SCGRKO testes exhibited distinct morphological changes, including reduced seminiferous tubular lumen formation, decreased total Sertoli cell numbers, and parallel reductions in meiotic spermatocyte and postmeiotic spermatid numbers. Conversely, tubular diameter was increased and testis size was normal in SCGRKO males. Decreased serum FSH and testicular Fshr mRNA levels were consistent with reduced Sertoli cell number. Adult SCGRKO testes also displayed atypical germ cells and interstitial focal accumulations of hypertrophic lipid-laden, immature-like Leydig cells. Circulating LH, and testicular Lhr mRNA, testosterone, dihydrotestosterone, and 3α/3β-diol levels were all reduced in mature SCGRKO mice, whereas serum testosterone and dihydrotestosterone levels remained normal. Moreover, Sertoli cell GR disruption caused differential changes to steroidogenic enzyme transcripts, with down-regulated testicular Cyp11a1 contrasting with up-regulated Hsd17b3 expression. Reduced SCGRKO testicular expression of Hsd11b2, encoding an enzyme for corticosterone inactivation, supports a dynamic coupling between Hsd11b and androgen production. Our novel SCGRKO model has revealed that Sertoli cell-mediated GR actions support normal testicular function. Sertoli cell GR is required to maintain normal testicular Sertoli/germ cell numbers and circulating gonadotropin levels, as well as optimal Leydig cell maturation and steroidogenesis, providing new insight into gluocorticoid-mediated impact on male reproduction.

Funding information:
  • NHLBI NIH HHS - T32 HL007088(United States)

Effects of antenatal synthetic glucocorticoid on glucocorticoid receptor binding, DNA methylation, and genome-wide mRNA levels in the fetal male hippocampus.

  • Crudo A
  • Endocrinology
  • 2013 Nov 21

Literature context:


Abstract:

The endogenous glucocorticoid (GC) surge in late gestation plays a vital role in maturation of several organ systems. For this reason, pregnant women at risk of preterm labor are administered synthetic glucocorticoids (sGCs) to promote fetal lung development. Animal studies have shown that fetal sGC exposure can cause life-long changes in endocrine and metabolic function. We have previously shown that antenatal sGC treatment is associated with alterations in global DNA methylation and modifications to the hippocampal methylome and acetylome. In this study, we hypothesized that: 1) there are changes in the transcriptional landscape of the fetal hippocampus in late gestation, associated with the endogenous cortisol surge; 2) fetal sGC exposure alters genome-wide transcription in the hippocampus; and 3) these changes in transcription are associated with modified glucocorticoid receptor (GR) DNA binding and DNA methylation. sGC was administered as 2 courses on gestational days (GD) 40, 41, 50, and 51, and the hippocampi of fetal guinea pigs were examined before (GD52) and after (GD65) the endogenous cortisol surge (Term ∼GD67). We also analyzed fetal hippocampi 24 hours and 14 days following maternal sGC injections (n = 3-4/group). Genome-wide modification of transcription and GR DNA binding occurred in late gestation, in parallel with the normal GC surge. Further, sGC exposure had a substantial impact on the hippocampal transcriptome, GR-DNA binding, and DNA methylation at 24 hours and 14 days following the final sGC treatment. These data support the hypothesis that GC exposure in late gestation plays a significant role in modifying the transcriptional and epigenetic landscape of the developing fetal hippocampus and that substantial effects are evident for at least 2 weeks after sGC exposure.

Funding information:
  • NIDA NIH HHS - K02 DA021863-01A1(United States)