X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Rat Anti-Mouse Endoglin / cd105 Monoclonal antibody, Unconjugated, Clone 209701

RRID:AB_2098896

Antibody ID

AB_2098896

Target Antigen

Mouse Endoglin / CD105 mouse

Proper Citation

(R and D Systems Cat# MAB1320, RRID:AB_2098896)

Clonality

monoclonal antibody

Comments

vendor recommendations: Flow Cytometry; Immunocytochemistry; Immunohistochemistry; Western Blot; Flow Cytometry, Immunocytochemistry, Western Blot

Clone ID

Clone 209701

Host Organism

rat

Vendor

R and D Systems

Cat Num

MAB1320

Publications that use this research resource

YAP/TAZ Orchestrate VEGF Signaling during Developmental Angiogenesis.

  • Wang X
  • Dev. Cell
  • 2017 Sep 11

Literature context:


Abstract:

Vascular endothelial growth factor (VEGF) is a major driver of blood vessel formation. However, the signal transduction pathways culminating in the biological consequences of VEGF signaling are only partially understood. Here, we show that the Hippo pathway effectors YAP and TAZ work as crucial signal transducers to mediate VEGF-VEGFR2 signaling during angiogenesis. We demonstrate that YAP/TAZ are essential for vascular development as endothelium-specific deletion of YAP/TAZ leads to impaired vascularization and embryonic lethality. Mechanistically, we show that VEGF activates YAP/TAZ via its effects on actin cytoskeleton and that activated YAP/TAZ induce a transcriptional program to further control cytoskeleton dynamics and thus establish a feedforward loop that ensures a proper angiogenic response. Lack of YAP/TAZ also results in altered cellular distribution of VEGFR2 due to trafficking defects from the Golgi apparatus to the plasma membrane. Altogether, our study identifies YAP/TAZ as central mediators of VEGF signaling and therefore as important regulators of angiogenesis.

Gli1+ Mesenchymal Stromal Cells Are a Key Driver of Bone Marrow Fibrosis and an Important Cellular Therapeutic Target.

  • Schneider RK
  • Cell Stem Cell
  • 2017 Jun 1

Literature context:


Abstract:

Bone marrow fibrosis (BMF) develops in various hematological and non-hematological conditions and is a central pathological feature of myelofibrosis. Effective cell-targeted therapeutics are needed, but the cellular origin of BMF remains elusive. Here, we show using genetic fate tracing in two murine models of BMF that Gli1+ mesenchymal stromal cells (MSCs) are recruited from the endosteal and perivascular niche to become fibrosis-driving myofibroblasts in the bone marrow. Genetic ablation of Gli1+ cells abolished BMF and rescued bone marrow failure. Pharmacological targeting of Gli proteins with GANT61 inhibited Gli1+ cell expansion and myofibroblast differentiation and attenuated fibrosis severity. The same pathway is also active in human BMF, and Gli1 expression in BMF significantly correlates with the severity of the disease. In addition, GANT61 treatment reduced the myofibroblastic phenotype of human MSCs isolated from patients with BMF, suggesting that targeting of Gli proteins could be a relevant therapeutic strategy.