Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

KChIP1 potassium channel antibody


Antibody ID


Target Antigen

KChIP1 potassium channel null

Proper Citation

(UC Davis/NIH NeuroMab Facility Cat# 73-003, RRID:AB_10697876)


monoclonal antibody


Originating manufacturer of this product. Applications: IB, ICC, IHC, IP, WB. Validation status: IF or IB (Pass), IB in brain (Pass), IHC in brain (Pass), KO (ND).

Clone ID


Host Organism



UC Davis/NIH NeuroMab Facility Go To Vendor

Cat Num


The Cav3-Kv4 complex acts as a calcium sensor to maintain inhibitory charge transfer during extracellular calcium fluctuations.

  • Anderson D
  • J. Neurosci.
  • 2013 May 1

Literature context:


Synaptic transmission and neuronal excitability depend on the concentration of extracellular calcium ([Ca](o)), yet repetitive synaptic input is known to decrease [Ca](o) in numerous brain regions. In the cerebellar molecular layer, synaptic input reduces [Ca](o) by up to 0.4 mm in the vicinity of stellate cell interneurons and Purkinje cell dendrites. The mechanisms used to maintain network excitability and Purkinje cell output in the face of this rapid change in calcium gradient have remained an enigma. Here we use single and dual patch recordings in an in vitro slice preparation of Sprague Dawley rats to investigate the effects of physiological decreases in [Ca](o) on the excitability of cerebellar stellate cells and their inhibitory regulation of Purkinje cells. We find that a Ca(v)3-K(v)4 ion channel complex expressed in stellate cells acts as a calcium sensor that responds to a decrease in [Ca]o by dynamically adjusting stellate cell output to maintain inhibitory charge transfer to Purkinje cells. The Ca(v)3-K(v)4 complex thus enables an adaptive regulation of inhibitory input to Purkinje cells during fluctuations in [Ca](o), providing a homeostatic control mechanism to regulate Purkinje cell excitability during repetitive afferent activity.

Funding information:
  • NCI NIH HHS - CA101936-01(United States)

Probing tissue microstructure with restriction spectrum imaging: Histological and theoretical validation.

  • White NS
  • Hum Brain Mapp
  • 2013 Feb 7

Literature context:


Water diffusion magnetic resonance imaging (dMRI) is a powerful tool for studying biological tissue microarchitectures in vivo. Recently, there has been increased effort to develop quantitative dMRI methods to probe both length scale and orientation information in diffusion media. Diffusion spectrum imaging (DSI) is one such approach that aims to resolve such information based on the three-dimensional diffusion propagator at each voxel. However, in practice, only the orientation component of the propagator function is preserved when deriving the orientation distribution function. Here, we demonstrate how a straightforward extension of the linear spherical deconvolution (SD) model can be used to probe tissue orientation structures over a range (or "spectrum") of length scales with minimal assumptions on the underlying microarchitecture. Using high b-value Cartesian q-space data on a rat brain tissue sample, we demonstrate how this "restriction spectrum imaging" (RSI) model allows for separating the volume fraction and orientation distribution of hindered and restricted diffusion, which we argue stems primarily from diffusion in the extraneurite and intraneurite water compartment, respectively. Moreover, we demonstrate how empirical RSI estimates of the neurite orientation distribution and volume fraction capture important additional structure not afforded by traditional DSI or fixed-scale SD-like reconstructions, particularly in gray matter. We conclude that incorporating length scale information in geometric models of diffusion offers promise for advancing state-of-the-art dMRI methods beyond white matter into gray matter structures while allowing more detailed quantitative characterization of water compartmentalization and histoarchitecture of healthy and diseased tissue.

Funding information:
  • Wellcome Trust - 1R24OD011883-01(United Kingdom)

Benefits and pitfalls of secondary antibodies: why choosing the right secondary is of primary importance.

  • Manning CF
  • PLoS ONE
  • 2012 Jun 7

Literature context:


Simultaneous labeling of multiple targets in a single sample, or multiplexing, is a powerful approach to directly compare the amount, localization and/or molecular properties of different targets in the same sample. Here we highlight the robust reliability of the simultaneous use of multiple mouse monoclonal antibodies (mAbs) of different immunoglobulin G (IgG) subclasses in a wide variety of multiplexing applications employing anti-mouse IgG subclass-specific secondary antibodies (2°Abs). We also describe the unexpected finding that IgG subclass-specific 2°Abs are superior to general anti-mouse IgG 2 °Abs in every tested application in which mouse mAbs were used. This was due to a detection bias of general anti-mouse IgG-specific 2°Abs against mAbs of the most common mouse IgG subclass, IgG1, and to a lesser extent IgG2b mAbs. Thus, when using any of numerous mouse mAbs available through commercial and non-profit sources, for cleaner and more robust results each mAb should be detected with its respective IgG subclass-specific 2°Ab and not a general anti-mouse IgG-specific 2°Ab.

Funding information:
  • NCRR NIH HHS - P40-RR17072(United States)

Pulvinar projections to the striatum and amygdala in the tree shrew.

  • Day-Brown JD
  • Front Neuroanat
  • 2010 Dec 1

Literature context:


Visually guided movement is possible in the absence of conscious visual perception, a phenomenon referred to as "blindsight." Similarly, fearful images can elicit emotional responses in the absence of their conscious perception. Both capabilities are thought to be mediated by pathways from the retina through the superior colliculus (SC) and pulvinar nucleus. To define potential pathways that underlie behavioral responses to unperceived visual stimuli, we examined the projections from the pulvinar nucleus to the striatum and amygdala in the tree shrew (Tupaia belangeri), a species considered to be a prototypical primate. The tree shrew brain has a large pulvinar nucleus that contains two SC-recipient subdivisions; the dorsal (Pd) and central (Pc) pulvinar both receive topographic ("specific") projections from SC, and Pd receives an additional non-topographic ("diffuse") projection from SC (Chomsung et al., 2008). Anterograde and retrograde tract tracing revealed that both Pd and Pc project to the caudate and putamen, and Pd, but not Pc, additionally projects to the lateral amygdala. Using immunocytochemical staining for substance P (SP) and parvalbumin (PV) to reveal the patch/matrix organization of tree shrew striatum, we found that SP-rich/PV-poor patches interlock with a PV-rich/SP-poor matrix. Confocal microscopy revealed that tracer-labeled pulvino-striatal terminals preferentially innervate the matrix. Electron microscopy revealed that the postsynaptic targets of tracer-labeled pulvino-striatal and pulvino-amygdala terminals are spines, demonstrating that the pulvinar nucleus projects to the spiny output cells of the striatum matrix and the lateral amygdala, potentially relaying: (1) topographic visual information from SC to striatum to aid in guiding precise movements, and (2) non-topographic visual information from SC to the amygdala alerting the animal to potentially dangerous visual images.

Funding information:
  • PHS HHS - HHSN266200400037C(United States)

Expression and distribution of Kv4 potassium channel subunits and potassium channel interacting proteins in subpopulations of interneurons in the basolateral amygdala.

  • Dabrowska J
  • Neuroscience
  • 2010 Dec 15

Literature context:


The Kv4 potassium channel α subunits, Kv4.1, Kv4.2, and Kv4.3, determine some of the fundamental physiological properties of neurons in the CNS. Kv4 subunits are associated with auxiliary β-subunits, such as the potassium channel interacting proteins (KChIP1 - 4), which are thought to regulate the trafficking and gating of native Kv4 potassium channels. Intriguingly, KChIP1 is thought to show cell type-selective expression in GABA-ergic inhibitory interneurons, while other β-subunits (KChIP2-4) are associated with principal glutamatergic neurons. However, nothing is known about the expression of Kv4 family α- and β-subunits in specific interneurons populations in the BLA. Here, we have used immunofluorescence, co-immunoprecipitation, and Western Blotting to determine the relative expression of KChIP1 in the different interneuron subtypes within the BLA, and its co-localization with one or more of the Kv4 α subunits. We show that all three α-subunits of Kv4 potassium channel are found in rat BLA neurons, and that the immunoreactivity of KChIP1 closely resembles that of Kv4.3. Indeed, Kv4.3 showed almost complete co-localization with KChIP1 in the soma and dendrites of a distinct subpopulation of BLA neurons. Dual-immunofluorescence studies revealed this to be in BLA interneurons immunoreactive for parvalbumin, cholecystokin-8, and somatostatin. Finally, co-immunoprecipitation studies showed that KChIP1 was associated with all three Kv4 α subunits. Together our results suggest that KChIP1 is selectively expressed in BLA interneurons where it may function to regulate the activity of A-type potassium channels. Hence, KChIP1 might be considered as a cell type-specific regulator of GABAergic inhibitory circuits in the BLA.

Funding information:
  • NINDS NIH HHS - N01NS02331(United States)

Regulation of neuronal activity by Cav3-Kv4 channel signaling complexes.

  • Anderson D
  • Nat. Neurosci.
  • 2010 Mar 23

Literature context:


Kv4 low voltage-activated A-type potassium channels are widely expressed in excitable cells, where they control action potential firing, dendritic activity and synaptic integration. Kv4 channels exist as a complex that includes K(+) channel-interacting proteins (KChIPs), which contain calcium-binding domains and therefore have the potential to confer calcium dependence on the Kv4 channel. We found that T-type calcium channels and Kv4 channels form a signaling complex in rat that efficiently couples calcium influx to KChIP3 to modulate Kv4 function. This interaction was critical for allowing Kv4 channels to function in the subthreshold membrane potential range to regulate neuronal firing properties. The widespread expression of these channels and accessory proteins indicates that the Cav3-Kv4 signaling complex is important for the function of a wide range of electrically excitable cells.

Complete 3D visualization of primate striosomes by KChIP1 immunostaining.

  • Mikula S
  • J. Comp. Neurol.
  • 2009 Jun 10

Literature context:


High-resolution 3D reconstruction and morphometric analysis of striosomes was carried out in macaque monkeys by using immunocytochemistry for the Kv4 potassium channel subunit potassium channel interacting protein 1 (KChIP1), a novel marker. The striosomes form a connected reticulum made up of two distinct planar sheets spanning several millimeters in the putamen, and long finger-like branches in the caudate nucleus and putamen. Although their spatial organization is variable, morphometric analysis of the striosomes, utilizing skeletonizations, reveals several quantitative invariant measures of striosome organization, including the following findings: 1) individual bifurcation-free striosome branches are 355 +/- 108.5 microm in diameter and 1,013 +/- 751 microm in length, and are both lognormally distributed; and 2) striosome branches exhibit three pronounced orientation preferences that are approximately orthogonal. The former finding suggests a fundamental anatomical and functional component of the striatum, whereas the latter indicates that striosomes are more lattice-like than their spatial variability suggests. The perceived variable spatial organization of the striosomes in primates belies many invariant features that may reflect striatal function, development, and pathophysiology.

Altered expression and localization of hippocampal A-type potassium channel subunits in the pilocarpine-induced model of temporal lobe epilepsy.

  • Monaghan MM
  • Neuroscience
  • 2008 Oct 15

Literature context:


Altered ion channel expression and/or function may contribute to the development of certain human epilepsies. In rats, systemic administration of pilocarpine induces a model of human temporal lobe epilepsy, wherein a brief period of status epilepticus (SE) triggers development of spontaneous recurrent seizures that appear after a latency of 2-3 weeks. Here we investigate changes in expression of A-type voltage-gated potassium (Kv) channels, which control neuronal excitability and regulate action potential propagation and neurotransmitter release, in the pilocarpine model of epilepsy. Using immunohistochemistry, we examined the expression of component subunits of somatodendritic (Kv4.2, Kv4.3, KChIPl and KChIP2) and axonal (Kv1.4) A-type Kv channels in hippocampi of pilocarpine-treated rats that entered SE. We found that Kv4.2, Kv4.3 and KChIP2 staining in the molecular layer of the dentate gyrus changes from being uniformly distributed across the molecular layer to concentrated in just the outer two-thirds. We also observed a loss of KChIP1 immunoreactive interneurons, and a reduction of Kv4.2 and KChIP2 staining in stratum radiatum of CA1. These changes begin to appear 1 week after pilocarpine treatment and persist or are enhanced at 4 and 12 weeks. As such, these changes in Kv channel distribution parallel the acquisition of recurrent spontaneous seizures as observed in this model. We also found temporal changes in Kv1.4 immunoreactivity matching those in Timm's stain, being expanded in stratum lucidum of CA3 and in the inner third of the dentate molecular layer. Among pilocarpine-treated rats, changes were only observed in those that entered SE. These changes in A-type Kv channel expression may contribute to hyperexcitability of dendrites in the associated hippocampal circuits as observed in previous studies of the effects of pilocarpine-induced SE.