X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Rabbit Anti-Ki67 Polyclonal Antibody, Unconjugated

RRID:AB_1140752

Antibody ID

AB_1140752

Target Antigen

Ki67 human, mouse, rat

Proper Citation

(Abcam Cat# ab66155, RRID:AB_1140752)

Clonality

polyclonal antibody

Comments

validation status unknown, seller recommendations provided in 2012: ELISA; Immunohistochemistry; Immunoprecipitation; Western Blot; ELISA, Immunohistochemistry-FoFr, Immunohistochemistry-Fr, Immunohistochemistry-P, Immunoprecipitation, Western Blot

Host Organism

rabbit

Vendor

Abcam

Selective Androgen Receptor Modulator S42 Suppresses Prostate Cancer Cell Proliferation.

  • Kawanami T
  • Endocrinology
  • 2018 Apr 1

Literature context:


Abstract:

We previously identified the selective androgen receptor (AR) modulator S42, which does not stimulate prostate growth but has a beneficial effect on lipid metabolism. In the prostate cancer (PC) cell line LNCaP, S42 did not induce AR transactivation but antagonized 5α-dihydrotestosterone (DHT)‒induced AR activation. Next, we investigated whether S42 suppresses the growth of PC cell lines. Basal growth of LNCaP cells was significantly suppressed by treatment with S42 compared with vehicle, as determined by cell counting and 5-bromo-2'-deoxyuridine assays. The suppressive effect of S42 on cell growth was evident in the AR-positive PC cells LNCaP and 22Rv1 and was slightly observed even in the AR-negative PC-3 cells. However, S42 did not induce apoptosis as determined by the terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling assay. S42 had an even greater suppressive effect on DHT-dependent LNCaP cell proliferation than on basal proliferation (P < 0.05). DHT treatment increased the expression of phosphorylated extracellular signal-regulated kinase (ERK)-mitogen-activated protein kinase (MAPK), a major signaling molecule for PC proliferation, and this was significantly inhibited by S42. DHT also significantly upregulated AR, insulinlike growth factor-1 receptor (IGF-1R), and insulin receptor (IR)-β protein levels, which were similarly reduced by S42 treatment. Importantly, S42 administration to mice attenuated the growth of LNCaP tumors and reduced tumor expression of the prostate-specific antigen, P504S, Ki67, and phosphorylated ERK-MAPK. These data suggest that S42 attenuates LNCaP tumor growth not by inducing apoptosis but by inhibiting the expression of proliferation-related receptors, including IGF-1R, IR, and AR, and by suppressing ERK-MAPK activation. S42 may thus be a feasible candidate for PC treatment.

Funding information:
  • NHLBI NIH HHS - P01 HL32262-25(United States)

Exendin-4, a Glucagonlike Peptide-1 Receptor Agonist, Attenuates Breast Cancer Growth by Inhibiting NF-κB Activation.

  • Iwaya C
  • Endocrinology
  • 2017 Dec 1

Literature context:


Abstract:

Incretin therapies have received much attention because of their tissue-protective effects, which extend beyond those associated with glycemic control. Cancer is a primary cause of death in patients who have diabetes mellitus. We previously reported antiprostate cancer effects of the glucagonlike peptide-1 (GLP-1) receptor (GLP-1R) agonist exendin-4 (Ex-4). Breast cancer is one of the most common cancers in female patients who have type 2 diabetes mellitus and obesity. Thus, we examined whether GLP-1 action could attenuate breast cancer. GLP-1R was expressed in human breast cancer tissue and MCF-7, MDA-MB-231, and KPL-1 cell lines. We found that 0.1 to 10 nM Ex-4 significantly decreased the number of breast cancer cells in a dose-dependent manner. Although Ex-4 did not induce apoptosis, it attenuated breast cancer cell proliferation significantly and dose-dependently. However, the dipeptidyl peptidase-4 inhibitor linagliptin did not affect breast cancer cell proliferation. When MCF-7 cells were transplanted into athymic mice, Ex-4 decreased MCF-7 tumor size in vivo. Ki67 immunohistochemistry revealed that breast cancer cell proliferation was significantly reduced in tumors extracted from Ex-4-treated mice. In MCF-7 cells, Ex-4 significantly inhibited nuclear factor κB (NF-κB ) nuclear translocation and target gene expression. Furthermore, Ex-4 decreased both Akt and IκB phosphorylation. These results suggest that GLP-1 could attenuate breast cancer cell proliferation via activation of GLP-1R and subsequent inhibition of NF-κB activation.

Funding information:
  • The Dunhill Medical Trust - R302/0713(United Kingdom)

Sonic hedgehog signalling mediates astrocyte crosstalk with neurons to confer neuroprotection.

  • Ugbode CI
  • J. Neurochem.
  • 2017 Aug 9

Literature context:


Abstract:

Sonic hedgehog (SHH) is a glycoprotein associated with development that is also expressed in the adult CNS and released after brain injury. Since the SHH receptors patched homolog-1 and Smoothened are highly expressed on astrocytes, we hypothesized that SHH regulates astrocyte function. Primary mouse cortical astrocytes derived from embryonic Swiss mouse cortices, were treated with two chemically distinct agonists of the SHH pathway, which caused astrocytes to elongate and proliferate. These changes are accompanied by decreases in the major astrocyte glutamate transporter-1 and the astrocyte intermediate filament protein glial fibrillary acidic protein. Multisite electrophysiological recordings revealed that the SHH agonist, smoothened agonist suppressed neuronal firing in astrocyte-neuron co-cultures and this was abolished by the astrocyte metabolic inhibitor ethylfluoroacetate, revealing that SHH stimulation of metabolically active astrocytes influences neuronal firing. Using three-dimensional co-culture, MAP2 western blotting and immunohistochemistry, we show that SHH-stimulated astrocytes protect neurons from kainate-induced cell death. Altogether the results show that SHH regulation of astrocyte function represents an endogenous neuroprotective mechanism.

LIM Kinase Inhibitor Pyr1 Reduces the Growth and Metastatic Load of Breast Cancers.

  • Prunier C
  • Cancer Res.
  • 2016 Jun 15

Literature context:


Abstract:

LIM kinases (LIMK) are emerging targets for cancer therapy, and they function as network hubs to coordinate actin and microtubule dynamics. When LIMKs are inhibited, actin microfilaments are disorganized and microtubules are stabilized. Owing to their stabilizing effect on microtubules, LIMK inhibitors may provide a therapeutic strategy to treat taxane-resistant cancers. In this study, we investigated the effect of LIMK inhibition on breast tumor development and on paclitaxel-resistant tumors, using a novel selective LIMK inhibitor termed Pyr1. Treatment of breast cancer cells, including paclitaxel-resistant cells, blocked their invasion and proliferation in vitro and their growth in vivo in tumor xenograft assays. The tumor-invasive properties of Pyr1 were investigated in vivo by intravital microscopy of tumor xenografts. A striking change of cell morphology was observed with a rounded phenotype arising in a subpopulation of cells, while other cells remained elongated. Notably, although Pyr1 decreased the motility of elongated cells, it increased the motility of rounded cells in the tumor. Pyr1 administration prevented the growth of metastasis but not their spread. Overall, our results provided a preclinical proof of concept concerning how a small-molecule inhibitor of LIMK may offer a strategy to treat taxane-resistant breast tumors and metastases. Cancer Res; 76(12); 3541-52. ©2016 AACR.

Funding information:
  • NEI NIH HHS - T32 EY024236(United States)

Osteocalcin Effect on Human β-Cells Mass and Function.

  • Sabek OM
  • Endocrinology
  • 2015 Sep 22

Literature context:


Abstract:

The osteoblast-specific hormone osteocalcin (OC) was found to regulate glucose metabolism, fat mass, and β-cell proliferation in mice. Here, we investigate the effect of decarboxylated OC (D-OC) on human β-cell function and mass in culture and in vivo using a Nonobese diabetic-severe combined immunodeficiency mouse model. We found that D-OC at dose ranges from 1.0 to 15 ng/mL significantly augmented insulin content and enhanced human β-cell proliferation of cultured human islets. This was paralleled by increased expression of sulfonylurea receptor protein; a marker of β-cell differentiation and a component of the insulin-secretory apparatus. Moreover, in a Nonobese diabetic-severe combined immunodeficiency mouse model, systemic administration of D-OC at 4.5-ng/h significantly augmented production of human insulin and C-peptide from the grafted human islets. Finally, histological staining of the human islet grafts showed that the improvement in the β-cell function was attributable to an increase in β-cell mass as a result of β-cell proliferation indicated by MKI67 staining together with the increased β-cell number and decreased α-cell number data obtained using laser scanning cytometry. Our data for the first time show D-OC-enhanced β-cell function in human islets and support future exploitation of D-OC-mediated β-cell regulation for developing useful clinical treatments for patients with diabetes.

Funding information:
  • NINDS NIH HHS - NS025044(United States)
  • Wellcome Trust - WT088357/Z/09/Z(United Kingdom)

Adrenal Development in Mice Requires GATA4 and GATA6 Transcription Factors.

  • Tevosian SG
  • Endocrinology
  • 2015 Jul 20

Literature context:


Abstract:

The adrenal glands consist of an outer cortex and an inner medulla, and their primary purposes include hormone synthesis and secretion. The adrenal cortex produces a complex array of steroid hormones, whereas the medulla is part of the sympathetic nervous system and produces the catecholamines epinephrine and norepinephrine. In the mouse, GATA binding protein (GATA) 4 and GATA6 transcription factors are coexpressed in several embryonic tissues, including the adrenal cortex. To explore the roles of GATA4 and GATA6 in mouse adrenal development, we conditionally deleted these genes in adrenocortical cells using the Sf1Cre strain of animals. We report here that mice with Sf1Cre-mediated double deletion of Gata4 and Gata6 genes lack identifiable adrenal glands, steroidogenic factor 1-positive cortical cells and steroidogenic gene expression in the adrenal location. The inactivation of the Gata6 gene alone (Sf1Cre;Gata6(flox/flox)) drastically reduced the adrenal size and corticosterone production in the adult animals. Adrenocortical aplasia is expected to result in the demise of the animal within 2 weeks after birth unless glucocorticoids are provided. In accordance, Sf1Cre;Gata4(flox/flox)Gata6(flox/flox) females depend on steroid supplementation to survive after weaning. Surprisingly, Sf1Cre;Gata4(flox/flox)Gata6(flox/flox) males appear to live normal lifespans as vital steroidogenic synthesis shifts to their testes. Our results reveal a requirement for GATA factors in adrenal development and provide a novel tool to characterize the transcriptional network controlling adrenocortical cell fates.

Funding information:
  • NINDS NIH HHS - R56 NS042861(United States)

Regional and stage-specific effects of prospectively purified vascular cells on the adult V-SVZ neural stem cell lineage.

  • Crouch EE
  • J. Neurosci.
  • 2015 Mar 18

Literature context:


Abstract:

Adult neural stem cells reside in specialized niches. In the ventricular-subventricular zone (V-SVZ), quiescent neural stem cells (qNSCs) become activated (aNSCs), and generate transit amplifying cells (TACs), which give rise to neuroblasts that migrate to the olfactory bulb. The vasculature is an important component of the adult neural stem cell niche, but whether vascular cells in neurogenic areas are intrinsically different from those elsewhere in the brain is unknown. Moreover, the contribution of pericytes to the neural stem cell niche has not been defined. Here, we describe a rapid FACS purification strategy to simultaneously isolate primary endothelial cells and pericytes from brain microregions of nontransgenic mice using CD31 and CD13 as surface markers. We compared the effect of purified vascular cells from a neurogenic (V-SVZ) and non-neurogenic brain region (cortex) on the V-SVZ stem cell lineage in vitro. Endothelial and pericyte diffusible signals from both regions differentially promote the proliferation and neuronal differentiation of qNSCs, aNSCs, and TACs. Unexpectedly, diffusible cortical signals had the most potent effects on V-SVZ proliferation and neurogenesis, highlighting the intrinsic capacity of non-neurogenic vasculature to support stem cell behavior. Finally, we identify PlGF-2 as an endothelial-derived mitogen that promotes V-SVZ cell proliferation. This purification strategy provides a platform to define the functional and molecular contribution of vascular cells to stem cell niches and other brain regions under different physiological and pathological states.

Regulation of pituitary tumor transforming gene (PTTG) expression and phosphorylation in thyroid cells.

  • Lewy GD
  • Endocrinology
  • 2013 Nov 21

Literature context:


Abstract:

Human pituitary tumor transforming gene (hPTTG) is a multifunctional proto-oncogene implicated in the initiation and progression of several tumors. Phosphorylation of hPTTG is mediated by cyclin-dependent kinase 2 (CDC2), whereas cellular expression is regulated by specificity protein 1 (SP1). The mechanisms underlying hPTTG propagation of aberrant thyroid cell growth have not been fully defined. We set out to investigate the interplay between hPTTG and growth factors, as well as the effects of phosphorylation and SP1 regulation on hPTTG expression and function. In our study, epidermal growth factor (EGF), TGFα, and IGF-1 induced hPTTG expression and phosphorylation in thyroid cells, which was associated with activation of MAPK and phosphoinositide 3-kinase. Growth factors induced hPTTG independently of CDC2 and SP1 in thyroid carcinoma cells. Strikingly, CDC2 depletion in TPC-1 cells resulted in enhanced expression and phosphorylation of hPTTG and reduced cellular proliferation. In reciprocal experiments, hPTTG overexpression induced EGF, IGF-1, and TGFα mRNAs in primary human thyrocytes. Treatment of primary human thyrocytes with conditioned media derived from hPTTG-transfected cells resulted in autocrine upregulation of hPTTG protein, which was ameliorated by growth factor depletion or growth factor receptor tyrosine kinase inhibitors. A transgenic murine model of thyroid targeted hPTTG overexpression (hPTTG-Tg) (FVB/N strain, both sexes) demonstrated smaller thyroids with reduced cellular proliferation and enhanced secretion of Egf. In contrast, Pttg(-/-) knockout mice (c57BL6 strain, both sexes) showed reduced thyroidal Egf mRNA expression. These results define hPTTG as having a central role in thyroid autocrine signaling mechanisms via growth factors, with profound implications for promotion of transformed cell growth.

Funding information:
  • NCI NIH HHS - CA173903(United States)