Resource Summary Report

Generated by ASWG on May 1, 2025

University of Texas at Austin Mouse Genetic Engineering Core Facility

RRID:SCR_021927

Type: Tool

Proper Citation

University of Texas at Austin Mouse Genetic Engineering Core Facility (RRID:SCR_021927)

Resource Information

URL: https://research.utexas.edu/cbrs/cores/transgenics/

Proper Citation: University of Texas at Austin Mouse Genetic Engineering Core Facility (RRID:SCR_021927)

Description: Provides services to generate, cryopreserve, and recover transgenic mice for modeling human disease.MGEF is fully equipped to make genetically engineered mice and is staffed with skilled personnel with decades of transgenic experience.Generates transgenic mice for studying mammalian gene function and modeling human disease, cryopreserves and archives transgenic mouse lines.

Abbreviations: MGEF

Synonyms: Mouse Genetic Engineering Facility, University of Texas at Austin Mouse Genetic Engineering Facility

Resource Type: service resource, core facility, access service resource

Keywords: USEDit, ABRF, transgenic mice, genetically engineered mice, cryopreservation, archiving transgenic mouse lines

Funding:

Availability: open

Resource Name: University of Texas at Austin Mouse Genetic Engineering Core Facility

Resource ID: SCR_021927

Alternate IDs: ABRF_1265

Alternate URLs: https://coremarketplace.org/?FacilityID=1265

Record Creation Time: 20220421T050137+0000

Record Last Update: 20250501T081600+0000

Ratings and Alerts

No rating or validation information has been found for University of Texas at Austin Mouse Genetic Engineering Core Facility.

No alerts have been found for University of Texas at Austin Mouse Genetic Engineering Core Facility.

Data and Source Information

Source: SciCrunch Registry

Usage and Citation Metrics

We found 1 mentions in open access literature.

Listed below are recent publications. The full list is available at <u>ASWG</u>.

Williamson MR, et al. (2023) Subventricular zone cytogenesis provides trophic support for neural repair in a mouse model of stroke. Nature communications, 14(1), 6341.