Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene.

The mammalian protein ZnT3 resides on synaptic vesicle membranes of zinc-containing neurons, suggesting its possible role in vesicular zinc transport. We show here that histochemically reactive zinc, corresponding to the zinc found within synaptic vesicles, was undetectable in the brains of mice with targeted disruption of the ZnT3 gene. Total zinc levels in the hippocampus and cortex of these mice were reduced by about 20%. The ultrastructure of mossy fiber boutons, which normally store the highest levels of vesicular zinc, was unaffected. Mice with one normal ZnT3 allele had reduced levels of ZnT3 protein on synaptic vesicle membranes and had intermediate amounts of vesicular zinc. These results demonstrate that ZnT3 is required for transport of zinc into synaptic vesicles and suggest that vesicular zinc concentration is determined by the abundance of ZnT3.

Pubmed ID: 9990090 RIS Download

Mesh terms: Animals | Brain | Carrier Proteins | Cerebellum | Cerebral Cortex | Gene Expression Regulation | Hippocampus | Immunohistochemistry | Membrane Proteins | Mice | Mice, Knockout | Promoter Regions, Genetic | Synaptic Vesicles | Zinc

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants

  • Agency: NIDDK NIH HHS, Id: DK53013
  • Agency: NINDS NIH HHS, Id: NS18895
  • Agency: NIGMS NIH HHS, Id: T32 GM07270

Mouse Genome Informatics (Data, Gene Annotation)

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.